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Among the various oscillation modes of neutron stars, f- and g- modes are the most likely to be
ultimately observed in binary neutron star mergers due to their relatively large coupling and shared
frequencies with tidal excitations. The f-mode frequency and damping time are known to correlate in
normal neutron stars with their compactness, and previous fits to hadronic stars are extended and shown to
be valid for an extremely broad sampling of equations of state using a piecewise polytropic parametrization
scheme for hadrons and a constant sound-speed parametrization for quark matter. Separate fits applicable to
quark (self-bound) stars are improved. Much more significant correlations exist with tidal deformability,
and therefore with moment of inertia and quadrupole moment. It is conclusively demonstrated that these
correlations are the same for all types of stars, whether hadronic, hybrid, or pure quark, and its accuracy is
quantified. A novel 1-node branch of the f-mode that occurs in low-mass hybrid stars in a narrow mass
range just beyond the critical mass necessary for a phase transition to appear is identified. This 1-node
branch shows the largest, but still small, deviations from the universal correlation for any configuration. It is
characterized by a nonmonotonic relation between neutron star mass and f-mode frequency, in contrast to
the behavior otherwise observed in normal, quark and hybrid stars. The g-mode only exists in matter with a
nonbarotropic equation of state involving temperature, chemical potential or composition (such as being
out of beta equilibrium), or a phase transition in barotropic matter. The g-mode therefore could serve as a
probe for studying phase transitions in hybrid stars. In contrast with the f-mode, g-mode frequencies do not
correlate well with tidal deformability, but depend strongly on properties of the transition (the density and
the magnitude of the discontinuity) at the transition. Imposing causality and maximum mass constraints, a
fit involving neutron star and phase transition properties is found and the g-mode frequency is determined
to have an upper bound of about 1.25 kHz. However, if the sound speed cs in the inner core at densities
above the phase transition density is restricted to c2s ≤ 1=3, g-mode frequencies can only reach about
0.8 kHz, which are significantly lower than f-mode frequencies (1.3–2.8 kHz). g-mode gravitational wave
damping times are found to be extremely long, >104 s (102 s) in the inner core with c2s ≤ 1=3 (1), in
comparison with f-mode damping times (0.1–1 s).
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I. INTRODUCTION

Isolated neutron stars (NSs) are expected to oscillate in
many modes, corresponding to different restoring forces.
In asteroseismology, fluid oscillations, including g-, f- and
p-modes, have been extensively studied in Newtonian
gravity [1]. In this paper, we focus on f- and g-modes
under linearized general relativity formalism [2,3]. The f-
mode is the lowest-order, fundamental, nonradial breathing
mode, characterized by a zero radial node number n ¼ 0.
The g-mode is a global oscillation with an arbitrary number
of nodes with gravity being the dominant restoring force.
They are a consequence of local buoyancy oscillations,
and characterized by small Eulerian pressure variations.

The f- and g-modes we consider have l ¼ 2 so that they
may couple with gravitational waves.
In addition, one could consider also p- and w-modes that

have an arbitrary number of nodes. The restoring force of
the p-mode is dominated by pressure variations in matter.
The w-mode is the strongly damped gravitational wave
(GW) mode dominated by variations of the space-time
metric [4]. However, p- and w-modes are excited only
marginally during neutron star mergers due to their high
frequencies, 5–12 kHz [5]. In any case, such high frequen-
cies are effectively unobservable, being well beyond the
range of next-generation GW detectors. We will not
consider them further.
The f-mode is a fundamental mode sitting between

the g- and p-modes, with frequency νf ¼ ωf=ð2πÞ∼
1.3–2.8 kHz. The frequency of f-mode is known to correlate
with the mean NS density ωf ∝

ffiffiffiffiffiffi
Gρ̄

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
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However, a more precise, EOS-insensitive, correlation can
be found between the dimensionless frequency Ωf ¼
GMωf=c3 with other NS properties such as the dimension-
less moment of inertia Ī ¼ Ic4=ðG2M3Þ and the dimen-
sionless tidal deformability Λ. A semi-universal Ωf − Ī
correlation was first proposed by Lau et al. [7], established
with a limited number of EOSs. Later, the so-called
I-Love-Q relation was discovered [8] that provides a rather
precise, EOS-insensitive, correlation between Ī, Λ, and the
dimensionless quadrupole moment. Thus, there exists a
similar Ωf − Λ correlation as well [9–11]. In this work,
we refine this correlation to encompass any causal EOS
constrained by neutron star mass observations and low-
density neutron matter studies employing a polytropic
parametrization scheme to model matter at supranuclear
densities. We have explored a much wider variety of EOSs
than in previous works. In addition, we quantify the
accuracy and bounds of this correlation and show that it
also applies to self-bound (pure quark) and hybrid (hadron-
quark) stars with strong phase transitions.
There are normally three types of nonzero frequency

g-modes corresponding to instabilities when matter moves
adiabatically through temperature, chemical composition
or density discontinuity. The local g-mode frequency νg is
determined by the Brunt-Vaisala frequency,

ν2g ¼ g2
�
1

c2e
−

1

c2s

�
eν−λ; ð1Þ

where ν and λ are the temporal and radial metric functions.
Here, g ¼ ðdp=drÞðεþ pÞ−1 is the local gravity, p and ε
are the pressure and energy density, respectively, ce ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dε

p
is the equilibrium sound speed and cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γpðμnBÞ−1
p

is the adiabatic sound speed, both in units
of c. γ ¼ ðnB=pÞ∂p=∂nB is the adiabatic index defining
how the matter reacts to the adiabatic compression. μ ¼
∂ε=∂nB and nB are the chemical potential and baryon
number density, respectively. g-mode buoyancy oscillations
are stable when ν2g > 0, while ν2g < 0 corresponds to a
convective region. When matter is marginally buoyant, the
g-mode has zero frequency. When the thermal [12] or
chemical [13,14] relaxation timescale is longer than the
oscillation period, the sound speed in temperature and
chemical equilibrium is different from that of the moving,
perturbed, matter. For the thermal and chemical g-modes,
an arbitrary number of nodes exist, and the principle
g-modes with n ¼ 1 have the highest frequency. A uni-
versal relation between chemical g-mode frequency and
lepton fraction was discovered recently [15] providing key
information about the symmetry energy at high density.
However, these frequencies are relatively small (≲0.6 kHz)
in most cases, except for exotic matter involving quarks and
hyperons [15,16]. A g-mode due to a density discontinuity
from a phase transition can be understand as a special
version of a g-mode due to chemical composition changes,

since matter on the low-density side can be treated as
having a different composition from that on the high-
density side. This situation occurs when matter does not
instantaneously change phase upon passing through the
phase transition boundary. For this reason, this type of
g-mode is also known as an i-mode (interface mode) in the
literature [17,18]. Higher order g-modes do not exist, unless
there are multiple density discontinuities. Both the fre-
quency and damping times of an i-mode are significantly
larger than that of other g-modes and are more likely to be
observed in gravitation wave observations [18]. When there
is more than one phase transition (density discontinuity)
in a NS, multiple groups of g-modes could exist [19]. We
will focus on the particular type of g-mode, which we will
call the discontinuous g-mode, with lowest order n ¼ 1.
Quadruple oscillations (l ¼ 2) of all modes can couple

to and lead to emission of GW radiation, and will be
characterized by the GW damping timescale τ. It is of
interest to estimate the observability of this radiation. The
amplitude of observed oscillations with frequency ω is [20]

hðtÞ ¼ h0e−t=τ cosωt; ð2Þ

where h0 ¼ hð0Þ. The observed GW energy flux is

FðtÞ ¼ c3ω2h20
16πG

e−2t=τ ð3Þ

¼ 3.17e−2t=τ
�

ν

kHz

�
2
�

h0
10−22

�
2

ergs cm−2 s−1; ð4Þ

The total GW energy is E ¼ 4πD2
R
∞
0 Fdt, where the

source distance is D, or

E ¼ c3ω2h20τD
2

8G
ð5Þ

¼ 4.27 × 1049
�

ν

kHz

�
2
�

h0
10−23

�
2

×

�
τ

0.1 s

��
D

15 Mpc

�
2

ergs: ð6Þ

The total radiated energy in corresponding oscillations
should be larger than this energy, since bulk viscosity also
contributes to dissipation. We use this formula as a lower
limit for the radiated energy in this oscillation mode in order
to be conservative. To scale this relation, we use a typical
frequency ν ¼ 1 kHz, damping time τ ¼ 0.1 s, and distance
D ¼ 15 Mpc (the distance to the Virgo Cluster). The
Advanced LIGO noise power spectrum (sensitivity) at that
frequency is about Sn ¼ 4 × 10−24. Thus, to be potentially
observable in Advanced LIGO with a signal-to-noise ratio
∼2.5 would require h0 ∼ 10−23 and a total radiated GW
energy E ∼ 4 × 1049 ergs. With a next-generation instru-
ment such as Cosmic Explorer and Einstein Telescope that
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has about 10 times the sensitivity of Advanced LIGO, the
threshold values become h0 ∼ 10−24 and E ∼ 4 × 1047 erg.
There are multiple scenarios for pumping energy into NS

oscillations, including core-collapse supernovae, NS merg-
ers, close encounters of a NS with a black hole (BH), and
NS starquakes [5]. The requisite energy can be compared
with the results of hydrodynamic simulations, which offer
powerful methods to study oscillations of proto-NSs from
core-collapse supernovae and of rapidly rotating supra-
massive NSs from NS mergers [21]. Core-collapse super-
novae have long been considered as promising GW sources
[22]. f- and g-mode oscillations can be identified in recent
simulations and show the total GW energy in core-collapse
supernovae of order 1044–1047 ergs depending on the mass
and rotation rate of the progenitor [23]. Thus, only galactic
sources with D < 20 kpc are likely to be observed in
Advanced LIGO observations, at a rate of, at best, a few per
century [24]. Next-generation instruments such as Cosmic
Explore improves the distance threshold to D < 200 kpc,
but will not change the observed rate much since additional
large galaxies lie outside this distance. Since a proto-NS is
hot and opaque to neutrinos, its mean density is smaller and
their f-mode frequencies should be smaller than that of
a cold NS.
For comparison, rapidly rotating supramassive NS rem-

nants fromNSmergers havemasses likely larger thanMmax,
the maximum mass of cold, nonrotating NS, being tempo-
rarily supported by rotation acquired from the binary’s
orbital angular momentum [25]. Due to their large expected
ellipticities and oscillation amplitudes, a GW energy from
10−2M⊙c2 to 10−3M⊙c2 could be emitted within 5 ms [26].
In this case, the observable distance range for an advanced
LIGO signal-to-noise ratio of 2.5 is estimated to be D≲
20–45 Mpc for Advanced LIGO observations [27–29]. The
binary neutron star merger rate has been estimated to be
320þ490

−240 Gpc−3 yr−1 based on the O1 and O2 LIGO–Virgo
observation runs aswell as on the first half of theO3 run [30].
Thus, the predicted event rate becomes more favorable,
ranging from 6 × 10−4 yr−1 to 0.04 yr−1. With next-
generation instruments such as Cosmic Explorer [31], the
predicted event rate improves further to 0.06 yr−1 to 4 yr−1,
which now becomes reasonable.
Gravitational radiation observed in the post-merger

phase is complicated by spin-oscillation interactions.
Neutron star merger simulations show that the dominant
fluid oscillation of a supramassive NS coincides with the
m ¼ 2 f-mode [32], and has a strong correlation with the
isolated NS f-mode frequency [11], especially for equal-
mass mergers. In the case of equal-mass mergers, the peak
frequency in supramassive NSs is almost equal to that of
the nonrotating f-mode frequency of isolated NSs with the
same mass as each of the merging components [33].
Besides directly observing gravitational waves from

post-merger NS oscillations, there might be additional
indirect observational possibilities during the inspiral

phase. During the inspiral, quadruple oscillations could
be excited by the periodic tidal interaction from a
companion, especially when the orbital frequency
approaches the oscillation frequency [34]. Orbital energy
transferred to quadruple oscillation results in dissipation
and an extra phase advance in the gravitational waveform,
and could have a large effect [35]. Because the g-mode has
a low frequency, tidal interactions could excite g-mode
oscillations well before resonances with the f-mode are
reached during the last part of the inspiral [36].
Since the f-mode frequency is much higher than the

orbital frequency, resonant excitations of the f-mode are
not likely for nonrotating NSs. However, if an inspiralling
NS is counterrotating, f-mode resonant frequencies could
be lowered significantly because the relevant frequency is
ωf − 2ωs, where ωs is the spin frequency. The f-mode has
a larger coupling with tidal field compared with the
g-mode. For a millisecond pulsar, f-mode resonances in
this case could cause phase advances up to hundreds of
cycles [35,37]. However, large phase shifts due to a
resonance seemed not to have occurred in the case of
the recent binary NS merger GW170817, since its wave-
form is consistent with a low spin prior. In any case, binary
evolution theory favors low spins as well [38], rendering
this scenario as unlikely.
Interestingly, a crude estimate of f-mode frequencies of

neutron stars can be obtained by combining observations
with the information described above. Dynamical tidal
effects can be modeled based on an effective-one-body
approach, treating tidal deformability andf-mode frequency
as key parameters [39–41]. A lower bound to the f-mode
frequency can be estimated from the nondetection of a
significant resonance phase shift, while an upper bound can
be estimated from the Ωf − Λ universal relation previously
alluded to. The resulting 90% credible interval of f-mode
frequency for GW170817was reported as 1.43 kHz < νf <
2.90 kHz for the more massive star and 1.48 kHz < νf <
3.18 kHz [42] for the less massive star.
Another source of NS oscillations could be starquakes

that lead to the release of the strain energy in the neutron
star crust. Starquakes might have a connection with glitches
observed in pulsar timing. Glitch models based on super-
fluid vortex models generally predict a negligible amount
of GW radiation [43]. But glitch models involving star-
quakes could transfer large amount of rotational energy to
f-mode oscillations [44]. Based on thousands of observed
pulsar glitches, frequency changes range from 10−10 Hz to
10−4 Hz [45]. Assuming a solid rotation as assumed in
starquake models, the change of rotational energies there-
fore range from 1034 ergs to 1043 ergs [46]. Therefore, only
an event very close to the Earth D≲ 3 pc–100 kpc) could
be observable even in next-generation instruments. The
closest known pulsar, RX J1856-3754, is about 0.12 kpc
away, which lies within the observable range. Assuming a
uniform pulsar distribution implies the existence of about
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106 pulsars within the Galaxy. However, only about 3000
pulsars are observed [47], giving an average distance of
about 1.3 kpc to the nearest pulsar, and indicating that most
remain undetected. Based on decades of pulsar monitoring,
about 10% of observed pulsars show glitches [48]. If a
similar percentage of unobserved pulsars are capable of
glitching, at most a few might lie in the observed range of
next-generation instruments.
In this paper, we calculate f-mode and g-mode frequen-

cies and damping times by solving relativistic nonradial
oscillation equations [3,49] which form an ordinary differ-
ential equation (ODE) eigenvalue problem. The f-mode is
the mode with zero radial nodes in these calculations, and
the g-mode is the mode with a single radial node having the
next-lower frequency than the f-mode. In such calculations,
NSs are usually assumed to be nonrotating, although
rotation could slightly increase the f-mode frequency
[50]. Going beyond the slow-rotation limit requires a more
complicated solution involving the time evolution with
partial differential equations [51], which could be calculated
from dynamical nonlinear GR simulation [52,53]. Previous
studies have mainly focused on hadronic NS. The few
existing calculations involving quark stars and hybrid NSs
generally have assumed an MIT bag model with c2s ≈ 1=3
for the NS inner core [54–56]. However, we will study
models incorporating higher sound speeds in both bare
quark stars and in the inner core of hybrid NSs. We employ
a parametrized hadronic EOS omitting temperature and
chemical composition dependence, as discussed in Sec. III,
allowing us to explore a wide variety of hadronic, hybrid
and pure quark NSs. Since our parametrized EOS does not
have temperature and chemical composition information,
we study NS oscillations in equilibrium (i.e., equal equi-
librium and adiabatic sound speeds) for both hadronic and
hybrid configurations. A long transition timescale is
assumed at quark-hadron interfaces, meaning that particle
concentrations are frozen during oscillations at the interface.
Many previous studies, especially for hybrid NSs and

quark stars, have used the Cowling approximation [55–60],
which lacks dissipation due to gravitational waves. The
Cowling approximation introduces about a 20%-30% error
in the f-mode frequency [10,61,62], which is significantly
less accurate than that of the Ωf − Ī − Λ universal relation
to be studied [7,9,10]. A 5% error in the g-mode frequency
[62] from the Cowling approximation has also been found
in M ≤ 1.2M⊙. Massive NSs with stronger gravity, in
principle, result in even larger error in g-mode from the
Cowling approximation [15]. Although nonlinear numeri-
cal simulations reproduce the f-mode frequency, their
damping times depart from linear perturbation theory
[52]. Instead, we solve metric perturbation equations
together with fluid perturbation equations to study the
oscillation mode frequencies and gravitational damping
timescales, see Appendix for details. In Sec. II we illustrate
this formalism applied in the case of Newtonian geometry

to selected analytic equations of state, and compare to
general relativistic results with and without Cowling
approximation. In Sec. III we develop a six-parameter
hadronic EOS together with a two-parameter extension to
describe a hybrid EOS. Results for the f-mode are presented
in Sec. V, where the EOS-insensitive Ωf − Ī − Λ relation is
constructed. We determine bounds for these relations and
quantify their uncertainties. Other fitting formulas are also
described. We describe, for the first time, a special 1-node
branch of the f-mode associated with so-called twin stars
whose masses are near the transition mass to hybrid stars in
Sec. VI. The discontinuous g-mode, present in stars with a
phase transition density discontinuity, is analyzed in
Sec. VII, where an EOS-insensitive correlation with stellar
compactness is developed and quantified.

II. NEWTONIAN f -MODE FREQUENCY WITH
ANALYTICAL EOSs

Much insight can be gained by comparing general
relativistic results for realistic EOSs with simplified cases
involving analytical EOSs both in general relativity and
Newtonian gravity. Despite the fact that relativistic correc-
tions are substantial, Newtonian analyses are valuable to
justify the nature of the overall scaling of relativistic
universal relations, and, in fact, can be more reliable than
calculations using the relativistic Cowling approximation. In
Newtonian physics, a variational analysis on the hydrostatic
equilibrium equations with a linear solenoidal velocity
perturbation leads to the Kelvin-mode frequency [63]

ω2
Kelvin ¼ G

2lðl − 1Þ
2lþ 1

R
R
0 εðrÞr2l−3mðrÞdrR

R
0 εðrÞr2ldr

¼ G
2lðl − 1Þð2l − 1Þ

2lþ 1

R
R
0 pðrÞr2l−2drR
R
0 εðrÞr2ldr ð7Þ

wherel is the angular quantumnumber. The second equality
in the above uses the hydrostatic equilibrium equations.
The Kelvin-mode frequency can be a good approximation to
the f-mode frequency of low-mass NSs with realistic EOSs
[9], which we confirm below for M ≲ 1.4M⊙ or β ≲ 0.14,
where β ¼ GM=ðc2RÞ is the compactness. According to
Eq. (7), Newtonian Kelvin-mode frequencies for the analytic
EOSs must satisfy ω2

Kelvin ¼ CGM=R3 [6], or Ω2
Kelvin ¼

Cβ3, where the coefficients C are displayed in Table I.
Figure 1 compares those values to numerical general

TABLE I. Newtonian coefficients C ¼ Ω2
Kelvin=β

3 for analytic
EOSs.

EOS l ¼ 2 l ¼ 3 l ¼ 4

Inc 4=5 12=7 8=3
T VII 4=3 204=77 152=39
Buch 3π2ð5π2 − 30Þ−1 2.94766 4.24121
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relativistic results. A slightly weaker dependence on β is
apparent for the relativistic results for more massive and
compact, but still observable, stars. Because the damping
time originates from the general relativistic calculation, and
is not defined in the Newtonian calculation, there is no
simple analytic estimate for its β-dependence.
In the case of an homogeneous incompressible sphere

(Inc), the energy density is constant, εðrÞ ¼ ε�, and one
finds [64]

C ¼ 2lðl − 1Þ
2lþ 1

: ð8Þ

This EOS will be seen to be a good approximation to that of
pure quark stars.
In the case of the Tolman VII [65] (T VII) solution, the

energy density has a quadratic dependence, ϵðrÞ ¼
εc½1 − ðr=RÞ2�, and

C ¼ 2lðl − 1Þð2lþ 11Þ
ð2lþ 1Þð2lþ 5Þ : ð9Þ

This analytic solution is seen to be an excellent approxi-
mation to the realistic SLy4 EOS for observable neutron
stars in the relativistic case for both f-mode frequencies
and damping times.
A third analytical solution is due to Buchdahl [66]

(Buch), and it is the only one stemming from an analytic
EOS, ε ¼ 12

ffiffiffiffiffiffiffiffi
p�p

p − 5p where p� is a constant. In the
Newtonian limit, Buch becomes equivalent to the n ¼ 1
polytropic EOS p ¼ ε2=ð144p�Þ, for which εðrÞ ∝
ðR=rÞ sinðr=RÞ and

C ¼ −
2lðl − 1Þ1F2ðl − 1

2
; 3
2
;lþ 1

2
;−π2Þ

ð2l − 3Þ1F2ðlþ 1
2
; 3
2
;lþ 3

2
;− π2

4
Þ ; ð10Þ

where AFB is the generalized hypergeometric function.
This analytic solution has less success approximating a
realistic EOS such as SLy4 than does T VII.
The relativistic Cowling approximation is applied to the

three analytic and the SLy4 EOS, see dotted lines in Fig. 1,
and is seen to generally overestimate Ωf by 20%-30%. In
case of Inc, the deviations exceed 40% at low compactness
where the Newtonian result is extremely accurate. Even in
the SLy4 case, the Newtonian estimation is much more
reliable except for extreme compactness where the error
introduced by static Newtonian gravity dominates over that
due to ignoring gravitational perturbations.

III. EOS FOR HADRONIC, HYBRID AND PURE
QUARK STARS

We are interested in hadronic, pure quark and hybrid NSs
with first-order phase transition. Previous studies of NS
f-and g-modes with first-order phase transitions used
polytropic EOSs with the same polytropic index for both
low- and high-density parts of EOS [62,67] or various
hadronic EOSs with the MIT bag model [54–56]. An
improvement we seek is to calculate with a more general
hadronic NS EOS constrained by χEFT N3LO calculations
[68] and causality coupled, if necessary, to constant sound
speedmatter at densities above a first-order phase transition.
The well-understood outer crust EOS is dominated by

relativistic degenerate electron with pressure pe ¼
ð3=π2Þ1=3n4=3e =4 with a small (negative) contribution from
the ionic lattice. Dripped neutrons appear in the NS inner
crust and slightly further modify the pressure. The hadronic
contributions cause no more than a 10% deviation from pe.
Uncertainties in the nuclear interaction in the crust have a
relatively negligible effect compared with uncertainties in
the core EOS. As a result we use the same fixed crust EOS
for all hadronic and hybrid NSs in this study. We employ an

FIG. 1. Dimensionless f-mode frequency versus compactness β for the SLy4 and three analytic EOSs. Solid lines show the result of
linear perturbation theory in general relativity, dashed lines show the Newtonian result (i.e., the Kelvin-mode frequency), and dotted
lines show results assuming the Cowling approximation. Dots on the SLy4, T VII and Buch solid lines indicate β values where causality
cs ¼ 1 occurs; the diamond on the SLy4 solid lines indicates the 1.4M⊙ configuration.
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analytic crust EOS nearly identical to Table II in [69] to
describe matter in the range nB < n0 ¼ 0.04 fm−3 to avoid
interpolation errors and to speed up the eigenvalue solver so
that a multitude of models may be considered. Our choice
of n0 ¼ 0.04 fm−3 is lower than the SLy4 core-crust
interface density where the pressure could vary over
10% with different core EOS models [70]. As a result,
the complete SLy4 crust, which extends to higher density, is
not used as our fixed crust EOS. This procedure neces-
sitates small parameter changes but allows for exploration
of a wider range of high-density EOSs.
Read et al. [69] found the pressure–density relation of

many proposed high-density EOS models could be rela-
tively faithfully rendered using three polytropic segments,
each segment being described by p ¼ Kinγi within the
region ni−1 < n < ni where i ∈ ½1 − 3�. Continuity of both
pressure p and energy density ε at the core-crust transition
density and polytropic segment boundaries determine Ki,
leaving 6 free parameters, ni and γi. Equivalently, ni and pi
can be used as parameters. Within the polytropic segment i,
the energy density is given by

ε¼ εi−1
n

ni−1
þp−pi−1ðn=ni−1Þ

γi−1
; ni−1≤n≤ni: ð11Þ

The polytropic exponents and the energy densities at the
boundaries are given by

εi ¼
pi

γi − 1
þ
�
εi−1 −

pi−1

γi − 1

�
ni
ni−1

;

γi ¼ lnðpi=pi−1Þ=lnðni=ni−1Þ: ð12Þ

We take n0 ¼ 0.04 fm−3, ε0 ¼ 37.88 MeV fm−3, p0 ¼
0.1239 MeV fm−3 from the crust EOS of SLy4. Following
Read et al., we choose n1 ¼ 0.3 fm−3, n2 ¼ 0.6 fm−3, n3 ¼
1.2 fm−3 [69]. The polytrope for n0 < n < n1 is fitted to
�σ (�2σ) NS matter EOS with a χEFT N3LO calculation
[68], giving p1 ¼ 15.63� 3.54ð�7.09Þ MeV fm−3. The
EOS in the higher density region n > n1 is controlled by
p2 and p3, which are free parameters limited by causality
and maximum neutron star mass constraints [71]. The
bounds for p2 and p3, as functions of p1, can be found
in Figs. 2 and 3 in Ref. [72]. We generate about 3000
hadronic EOSs by exploring the entire allowed ranges of
p1, p2 and p3. This 3-parameter model is called PP3.
For the high-density matter above the phase transition in

hybrid stars, or for strange quark stars, we use a constant
sound speed parametrization (called CSS) [73]. In high-
density matter with p > pt in hybrid stars, one has

ε ¼ ðp − ptÞ=c2s þ εt þ Δε ð13Þ

where pt is the pressure at the first-order phase transition, εt
is the energy density at the low-density side of the phase

transition, Δε is the density jump at εt, and cs is the
(constant) sound speed for p > pt.
There are 3 parameters for the CSS part of the hybrid

EOS; nt=ns ∈ ½1; 4�, Δε=εt ∈ ½0.1; 1�, and c2s ∈ ½1=3; 1�. In
order to minimize parameters in the hadronic EOS for
hybrid stars, we only vary p1 within the 2σχEFT band and
fix p2 ¼ 7.3p1 and p3 ¼ 7.3p2, so that γ2 ¼ γ3 ¼ 2.868
for n > n1 whenever needed. We therefore utilize only 3
hadronic EOSs, which we call N3LO-cen and N3LO� σ,
for hybrid stars. Note that this is not the same as using the
published N3LO EOS, which is only given up to about 2ns,
but employs a particular extrapolation for n > 2ns as
described in Ref. [68]. In total, there are 4 parameters
for the hybrid stars.
In pure quark stars at all densities

ε ¼ p=c2s þ εsurf ð14Þ

where εsurf is the energy density at the surface (where
p ¼ 0). The quark and hybrid expressions are the same
when pt ¼ Δε ¼ 0 and εt ¼ εsurf . For the pure quark EOS,
there are only two parameters, cs and εsurf .

IV. f -MODE FREQUENCIES OF HADRONIC,
HYBRID AND QUARK STARS

We first compare f-mode frequencies as a function of
stellar mass for pure quark stars (i.e., self-bound stars)
using the CSS parametrization with those for representative
hadronic EOSs corresponding to the central values of the
neutron matter calculation (N3LO-cen) and its one-sigma
uncertainty bounds (N3LO� σ) for all densities in excess
of the crust-core boundary, see Fig. 2. In this example,
quark stars have a c2s range from 1=3 to 1 while the other
parameter, εsurf , is selected to give a maximum neutron star
mass Mmax from 2.0 to 2.6M⊙. Note that quark stars with
smaller Mmax have larger f-mode frequencies, and that in
all cases, the frequency increases with stellar mass. Quark
stars also have a lower limiting frequency whereas the
hadronic frequencies decrease continuously with decreas-
ing mass. Damping times for quark stars, on the other hand,
generally decrease with mass except nearMmax and there is
no threshold damping time.
Next we explore the behavior of hybrid stars in Fig. 3.

Various values of nt, Δε=εt and c2s are utilized. No
restrictions are placed onMmax for this study. The hadronic
EOS N3LO-cen is used for the hadronic parts of the hybrid
stars. For nt ¼ ns, the phase transition occurs for masses so
small that the resulting f-mode frequencies and damping
times show a similar behavior to those of pure quark stars.
Just above the transition masses, the frequencies increase
more rapidly with mass for hybrid stars than for the N3LO-
cen hadronic stars, but this behavior can reverse close to
Mmax. Note that large f-mode frequencies are not possible
for low-mass hadronic and hybrid NSs, which provides a
possible observable to distinguish the existence of a quark
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star. In this example, a 1.M⊙ (1.5M⊙) NS with f-mode
frequency larger than 2.1 kHz (2.4 kHz) must be a quark
star unless 2-σ PNM bounds are violated.
Next, we proceed to an examination comparing larger

numbers of hadronic, hybrid and quark matter stars in order
to identify systematic trends. Figure 4 shows the relation
between the f-mode frequency and the stellar compactness
for thousands of stars of varying mass: hadronic stars
having a fixed crust with the PP3 parametrized EOS,
hybrid stars having a four-parameter EOS with a fixed
crust, and the three parameter CSS quark matter stars, all
subject to the constraints of causality andMmax ≥ 2M⊙. As
expected from our earlier comparison of SLy4 and the three
analytic EOSs, there is a global correlation betweenΩf and
β. However, in contrast to the Newtonian studies, the purely
linear relation between Ωf and β3=2 is broken. The right-
hand panel in Fig. 4 shows that the effective power of β that
would best fit quark stars remains close to 3=2, but best fits
to the body of hadronic and hybrid stars is considerably less
than 3=2.
We find a power-law fit with the minimum uncertainty,

applicable to hadronic and hybrid stars with M ≥ 1M⊙, is

Ωf ¼ Aβ5=4; ð15Þ

where A ¼ 0.714� 0.056 for hadronic stars and A ¼
0.711� 0.072 for hybrid stars (see the left panel of
Fig. 5). This is clearly shown by the much smaller dynamic
range of the vertical axis in this figure compared to the
right-hand panel of Fig. 4. In contrast, pure quark stars
follow the Newtonian trend of β3=2. If we further impose
the GW170817 binary tidal deformability constraint
Λ̄GW170817 < 521 [74], the respective values of A stay
the same for hadronic stars and A ¼ 0.720� 0.063 for

hybrid stars (see the right panel of Fig. 5). This figure
demonstrates how well a measure of Ωf is able to place a
tight constraint on β.
In summary, we have found a simple power-law fit

relating Ωf to β5=4 for all hadronic and hybrid stars that has
only an 8% uncertainty.
Previously, a general power expansion of ΩfðβÞ has

shown to also be relatively accurate [11,75]. With our
parametric approach, we refine the accuracy of such
relations for hadronic, hybrid and quark NSs and extend
the study to damping times in Fig. 6. We fit the hadronic
and hybrid Ωf − β results for M ≥ 0.7M⊙ with

½Ωf−β�H ¼
X2
i¼0

aiβi þ
�X6

i¼4

aiβi
�
i ð16Þ

The lower panels in Fig. 6 show the maximum deviation of
this fit for all sampled configurations of each type. The
average deviations are much smaller. This relation fits
Re½Ωf� for hadronic stars slightly better than for hybrid
NSs, and to better than 6.3% (11.5%) accuracy for all
physically-relevant configurations. Damping times are fit
to a similar precision 13.5% for hadronic stars, but the
maximum uncertainty for hybrid stars is about 23.8%. It is
seen that the Buch and T VII solutions are good repre-
sentations for both hadronic and hybrid stars. The Ωf − β
relation for frequencies and damping times for pure quark
stars are much closer to the Inc analytic case, due to lack of
a soft compressible crust. For the pure quark case, we
employ the fit

½Ωf−β�Q ¼ a0β3=2 þ
�X6

i¼4

aiβi
�
i ð17Þ

FIG. 2. The left (right) panel shows the f-mode frequency (damping time) as a function of M for pure quark stars with the CSS
parametrization (colored curves) compared to hadronic stars employing the N3LO-cen EOS and its one-sigma uncertainty bounds (black
curves).
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applicable to stars with M ≥ 1M⊙ using results for
M ≥ 0.7M⊙. The precision of the quark Ωf − β relation
is about 7.6% for the real part and 6.1% for the imaginary
part. The Inc analytic model is a good representation of
quark stars.
The bottom panels in Fig. 6 also show the maximum

deviations for hadronic stars developed by Refs. [75]
(Tsui), [6] (Andersson), and [11,76] (Lioutas). For the
f-mode frequency, Tsui and Lioutas fitted results from 9
(20) hadronic EOSs from 0.12 < β < 0.28 to a quadratic

formula. We checked that adding an additional term does
not offer much improvement, but by altering parameters we
were able to improve the fit at large compactnesses. For the
f-mode damping time, Tsui also used a quadratic formula,
but Andersson used expressions with fourth and fifth power
terms using results from 12 hadronic EOSs in the range
0.15 < β < 0.28. Lioutas improved this fit by adding a
sixth power term. We checked that adding additional terms
offers no further improvement. Overall, our fit for the
f-mode frequency for hadronic stars is not a substantial

FIG. 3. The same as Fig. 2 but for hybrid NSs with the hadronic EOS fitted to N3LO-cen and CSS sound speeds c2s ¼ ½1=3; 2=3; 1�
from top to bottom, respectively.
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improvement over previous fits except for β ≳ 0.25, but we
have now established the validity of these fits for a much
more complete sampling of physically possible hadronic
EOSs, and further established their validity for hybrid
configurations which had heretofore not been tested. Our fit
for the damping time for hadronic EOSs is a substantial
improvement over previous fits, and we have further
established its validity for hybrid stars. Furthermore, we
find that previous fits are poor fits to f-mode frequencies
and damping times for quark stars, and we established
accurate fits for these cases.

V. Ωf − Ī −Λ RELATIONS

Amuch more precise EOS-insensitive relation relatesΩf
to Ī, as first shown by Lau et al. [7]. However, Ref. [7] only
used a small sample of 11 EOSs. Later, the EOS-insensitive
Ī − Λ −Q relation was discovered [8], suggesting a sim-
ilarly good Ωf − Λ relation should also exist, which was
confirmed by Refs. [9–11], but also using limited samples
of EOSs. The relations regarding the f-mode are much

tighter than similar relations involving other modes, e.g.
p-modes [6], andw-modes [77]. However, Ref. [78] claimed
quark matter EOSs violate the hadronic Ωf − Ī − Λ
relation.
We extended previous results by testing the accuracy of

the Ωf − Ī − Λ relation for extremely large samples of
hadronic, quark and hybrid NS.We established fits valid for
all three stellar categories, hadronic, hybrid and quark, for
M ≥ 1.0M⊙ using results for M ≥ 0.7M⊙:

Ωf−Ī ¼
X6
i¼0

aiĪ−i=2 ð18Þ

Ωf−Λ ¼
X6
i¼0

aiðlnΛÞi ð19Þ

Figures 7 and 8 show theΩf − Ī − Λ relations for hadronic,
hybrid and quark NS. Fitting parameters are given in
Table II. No star of any category with M > 1M⊙ signifi-
cantly violates the Ωf − Ī − Λ fits in Eqs. (18) and (19) to

FIG. 4. The dimensionless f-mode frequency Ωf as a function of stellar compactness β for parametrized hadronic, hybrid and quark
matter stars constrained by causality and Mmax ≥ 2M⊙. General relativistic results for the analytic EOSs and the SLy4 and N3LO-cen
hadronic EOSs are shown for comparison.

FIG. 5. Left: the same as the right panel of Fig. 4 but with the y-axis replaced byΩfβ
5=4. Right: the same as the left panel but including

the additional GW170817 Λ̃ constraint [74].
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more than about 1%. Moderate deviations are limited to
low-mass hybrid stars ≲1M⊙ with strong phase transitions.
Fits for the real part ofΩf are somewhat more accurate than
for the imaginary part. For Ī ≳ 15, i.e., M ≲ 1.6M⊙, the
maximum deviation of the real part reduces to only 0.3%.
Interestingly, the Ωf − Λ relation is generally even more
precise than for the Ωf − Ī relation except for low-mass
configurations near 1M⊙. In hadronic NSs, the maximum

deviation of the real (imaginary) part is about 0.2% (2%).
The fits and maximum deviations from Refs. [7] (Lau), [10]
(Chirenti), [9] (Chan), [11] (Lioutas), and [79] (Sotani), are
also shown in Figs. 7 and 8. Lau used 9 hadronic EOSs and
2 quark EOSs. Lioutas used 20 hadronic EOSs. Sotani used
8 hadronic EOSs. Chirenti used 9 hadronic EOSs. Chan
used 5 hadronic EOSs and 1 quark EOSs. Our work
includes 2495 hadronic EOSs, 2189 hybrid NS EOSs

FIG. 6. The Ωf − β EOS insensitive relations. The left (right) panel shows the real (imaginary) part of the dimensionless frequency.
The top, middle, and the bottom panels are for hadronic, hybrid, pure quark (self-bound) EOSs, respectively. Grey regions represent
results with different EOSs for hadronic NS, hybrid NS and quark star. “This work” refers to the fits of Eq. (16) for hadronic and hybrid
stars and Eq. (17) for pure quark stars. Fits due to Refs. [75] (Tsui), [6] (Andersson), and [11,76] (Lioutas) are also shown. The lower
parts of each panel show maximum deviations of each fit from the full computed results for all configurations studied in this work.
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and 20 quark EOSs. Our work thus demonstrates that these
relations are truly universal.

VI. THE SPECIAL 1-NODE f -MODE BRANCH

The f-mode is characterized by the lowest radial order
(n ¼ 0) for normal EOS. We found the f-modes of low-
mass hybrid stars with strong phase transition that lead to
the so-called twin star phenomenon can be qualitatively
different than the normal f-modes. The twin star phenome-
non is the situation where, as central density is increased

through the phase transition density, the mass and radii both
initially decrease. Such configurations are dynamically
unstable. As the central density is further increased, the
mass may begin to rise while the radius continues to fall,
leading to a twin branch of stable configurations. Note that
the normal and twin stable branches are disconnected in
M − R space. It is then possible to have stable stars with the
same mass but differing radii (and also f-mode frequen-
cies). Such a situation can be seen in Fig. 3 for a few cases,
including c2s ¼ 1; nt ¼ 2ns and Δε=εt ¼ 0.8 (solid red
curves in lowest panels). To demonstrate the different

FIG. 7. The same as Fig. 6 except for the Ωf − Ī universal relation. “This work” refers to Eq. (18) and other fits are due to Refs. [7]
(Lau) and [10] (Chirenti) are shown.
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f-mode behavior on the more compact twin star branch, we
utilize this particular EOS in Figs. 9 and 10.
In a normal star without a first-order transition, all

perturbation amplitudes are continuous and smooth, see
Fig. 14 or the top left panel of Fig. 9. In a hybrid star with a
first-order transition, however, the slopes of all perturbation
amplitudes become discontinuous, and V itself becomes
discontinuous, at the transition boundary (last 7 panels of
Fig. 9). For hybrid stars with relatively small quark cores
that occupy the twin star branch, all fluid and metric
perturbation amplitudes can become negative in some parts

of the star between the phase transition and the surface
(second through sixth panels of Fig. 9. The overall sign of
the perturbations is trivial since we define a positive fluid
perturbation amplitude W ¼ 1 at the center of the NS.
What’s nontrivial is that the unstable and some stable
hybrid stars have a radial node (zero) in the fluid and metric
perturbation amplitudes X, W, H0, H1, K (but not V,
which, however discontinuously changes sign) at a radius
slightly larger than the phase transition radius Rt. We will
call this type of behavior 1-node II (second through fourth
panels of Fig. 9). The radial nodes move outward with

FIG. 8. The same as Fig. 6 but for the Ωf − Λ universal relation. “This work” refers to Eq. (19) and other fits due to Refs. [9] (Chan),
[11] (Lioutas), and [79] (Sotani) are shown.
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increasing central density or pressure and Rt. Above some
critical Rt, the radial nodes for X, W, H0, H1 and K
simultaneously vanish, but the discontinuity and sign
change in V remains (fifth and sixth panels of Fig. 9).
Stars with radial nodes in V only we refer to as 1-node I.
For hybrid stars with even larger cores, the discontinuity in
V remains, but it no longer has a sign change at Rt, and the
f-mode oscillations recover the standard n ¼ 0 behavior of
hadronic stars (last two panels of Fig. 9). Although V is
always discontinuous at Rt, see Eq. (A4), the discontinuity
magnitude becomes small for massive hybrid stars. The
exotic behavior of the perturbation amplitudes causes
f-mode frequencies of twin stars to somewhat deviate
from universal relations for masses near Mt, see Fig. 10. A
gap of about 0.1 kHz can appear in the f-mode frequency
spectrum for M ≃Mt. The f-mode frequencies and damp-
ing times of both 0-node and 1-node hybrid stars show
deviations as well, see middle panels of Figs. 7 and 8. The
f-mode frequency of hybrid NSs is not continuous between
the 1-node I and 1-node II branches. The 1-node II branch
side has a lower frequency than the 1-node I branch, and the
damping time greatly increases near the critical point
between 1-node I and 1-node II branches.
While the particular configurations explored here would

never be expected to be observed because of the small value
of Mt, such behavior could have observational conse-
quences for hybrid EOSs where Mt ≳ 1M⊙. For example,
the case c2s ¼ 1; nt ¼ 4ns and Δε=εt ¼ 0.8 shown in Fig. 3
(red dashed line in the bottom row) has a transition mass
Mt ≃ 1.6M⊙. But this case cannot be observationally
realized since Mmax ≃ 1.6M⊙ is too small. For the
N3LO-cen and �σ hadronic EOSs, which are relatively
soft, we do not find it possible to produce twin stars
simultaneously having M ≥ 1M⊙ and Mmax ≥ 2M⊙. It is
possible, however, for these conditions to be realized for
stiffer hadronic EOSs.
The models of Refs. [80] and [81] provide some

examples for stiffer EOSs which satisfy both constraints
on the symmetry energy at saturation density and the
inferred GW170817 tidal deformability. One caveat is that
the quark matter part of the EOS must have c2s > 1=3. The
twin star cases in these studies are of two types, one having
Mt below that of the largest component of GW170817 but
≥ 1M⊙, and the other having Mt ≳ 2M⊙. The 1-node
behavior might be potentially observable for these cases.

In any event, our previously established universal relations
can be accurately extended to hybrid stars, with small
violations only in the case of twin stars with masses
near Mt.

VII. THE DISCONTINUOUS g-MODE OF
HYBRID NS

We are also interested in the g-mode that accompanies a
discontinuity inside a NS. Since the EOSs of both strange
quark stars and hadronic stars have no discontinuities, we
focus on the discontinuous g-mode for hybrid stars
described in Sec. III. For comparison purposes, we calcu-
lated g-mode frequencies with and without the Cowling
approximation (left panel of Fig. 11). The relative error
reaches 12% (22%) for c2s ¼ 1=3 (c2s ≥ 1=3). This error is
significantly lower than that of the Cowling approximation
for the f-mode. Considering that there is no universal
relation accurate to the few percent level for the g-mode, the
Cowling approximation could serve as a reasonable
approximation. However, previous studies have been too
optimistic about its accuracy, e.g. a claimed 5% error by
Refs. [62] and [82]. This is due to our consideration of a
wider variety of first order transitions, not just the relatively
weak core-crust transition, as well as our inclusion of more
realistic NSs (M > 1.2M⊙).
Given that even the Cowling approximation involves a

complex numerical calculation, it would be useful to find
an analytic fit to the fully relativistic results. In Newtonian
fluid mechanics, the frequency of surface gravity waves
between two stratified fluids with a uniform gravitational
field (i.e., the slab approximation) is analytically solv-
able [83]:

ω2
g ¼

ðεþ − ε−Þgk
εþ= tanh ½kdþ� þ ε−= tanh ½kd−�

; ð20Þ

where g is the gravitational acceleration and k is the angular
wave number. εþ ¼ εt þ Δε (ε− ¼ εt) and dþ ¼ Rt
(d− ¼ R − Rt) stand for the energy density and depth,
respectively, on the high (low) density side. When the
discontinuity at Rt happens near the surface R of a star, the
geometry approximates a stratified two-fluid problem with
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp
=Rt. Red shifts in the frequency and gravi-

tational acceleration approximately cancel, so g can be
taken to be that of Newtonian gravity, GMt=R2

t .

TABLE II. Fitting parameters of real and imaginary parts of Ωf in Eqs. (16)–(19).

a0 a1 a2 a3 a4 a5 a6 a7

½Ωf−β�H −0.02223 0.5982 −0.007331 0 0.1048 −0.4971 0.5943 0
½Ωf−β�Q 0.8811 0 0 0 0.05352 −0.1849 0.1253 0
Re½Ωf−Ī � 0.09006 −2.41 29.47 −179.8 659.5 −1427 1689 −845.4
Im½Ωf−Ī � 7.506e-05 −0.002054 0.02363 −0.1484 0.5589 −1.226 1.493 −0.8139
Re½Ωf−Λ� 0.1817 −0.006652 −0.004105 0.0004072 1.712e-05 −4.796e-06 2.838e-07 −5.743e-09
Im½Ωf−Λ� 4.514e-05 1.907e-05 4.3e-06 −5.025e-06 1.133e-06 −1.165e-07 5.851e-09 −1.167e-10
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Reference [82] concludes that discontinuous g-modes near
the NS surface can be approximated, using R − Rt ≪ Rt,
M −Mt ≪ Mt, and Δε ≪ εt, as

Ω2
g ≈ lðlþ 1Þβ3 Δε=εt

1þ Δε=εt
ð1 − Rt=RÞ: ð21Þ

FIG. 9. Metric and real parts of fluid perturbation amplitudes (solid), and static metric functions (dotted) for the case of a hybrid star
(except for the upper left panel where the central pressure equals the transition pressure, pc ¼ pt). The phase transition is marked with a
vertical solid line at r ¼ Rt. Five of the panels have the same pc as in Fig. 10 and are so indicated with colored crosses.H0,H1 andK are
in units of εs ¼ 152.26 MeV fm−3, X is in units of ε2s and W, V, λ and ν are dimensionless.
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We tested this approximation with l ¼ 2 and find relatively
large deviations, see the middle panel of Fig. 11, partly
because their assumption of infinite depth dþ ≫ d− breaks
down for Rt=R < 0.5 [67]. Instead, we do not assume
Δε ≪ εt, M −Mt ≪ Mt or R − Rt ≪ Rt, and we also
approximate the wave number with k ¼ D=Rt, where the
fitting parameter D ¼ 1.21. This leads to

Ω2
g ≈

β3ðMt=MÞðR=RtÞ3ðΔε=εtÞD tanh½D�
1þ Δε=εt þ tanh½D�= tanh½DðR=Rt − 1Þ� ; ð22Þ

which performs significantly better than Eq. (21) and
comparably to the Cowling approximation, see Fig. 11.
We note this fit for the g-mode frequency depends only on
M=R;Mt=M;Rt=R and Δε=εt and is otherwise insensitive
to the hybrid EOS parameters εt and cs as well as the
assumed hadronic EOS.
Fig. 12 shows the mass dependence of the g-mode

frequency and damping time with various high-density
sound speeds, transition densities and density discontinu-
ities. In most cases for stable NSs, g-mode frequencies are

not very sensitive to NS mass. However, damping times
have a very strong mass dependence. Both very low and
very high mass hybrid NSs have relatively long damping
times. A previous study with a different EOS parametriza-
tion suggested that g-mode damping times are significantly
larger than those of other damping mechanisms [67]. Our
calculation shows smaller g-mode damping times. When
the density discontinuity approaches Δε=εt ¼ 1, g-mode
damping times become comparable to the neutrino damp-
ing time, 0.1–10 s [84]. However, these configurations have
relatively low Mmax. If we impose Mmax > 2M⊙ and
causality constraints, the discontinuous g-mode damping
times should satisfy τg ≳ 106 s.
Equation (22) is based on Newtonian mechanics and

provides a reasonable but coarse approximation. Starting
from the fact that the g-mode frequency is relatively
insensitive to the neutron star mass (Fig. 12), we focus
on the g-mode frequencies of maximum mass hybrid NS
configurations, which are shown in Fig. 13 for different
values of cs, Δε=εt and nt. If we imposeMmax > 2M⊙ and
causality constraints, the discontinuous g-mode frequency
satisfies νg ≲ 1.25 kHz. g-modes of observed stars will be

FIG. 10. f-mode frequency and damping time for hybrid NSs with small quark cores as functions of mass and tidal deformability.
Brown and yellow dots represent stars with normal f-modes having no radial nodes, while pink and gray dots represent stars with the
special 1-mode behavior. The colored crosses correspond to 5 configurations displayed in Fig. 9. In the tidal deformability plots, the
universal relations from Eq. (19) are shown.
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at slightly larger frequencies than those shown in Fig. 13
for a given set of quark star parameters.

VIII. DISCUSSION AND CONCLUSION

With the improvement provided by the next generation
of gravitational-wave telescopes, we may detect gravita-
tional waves from quasinormal modes of NS oscillation. In
this paper, we focus on the f-mode and the discontinuity
g-mode oscillations, which have frequencies in the detect-
able range. The f-mode has a relatively large coupling with
tidal excitations, while the discontinuity g-mode has a
lower frequency that would be excited earlier in the inspiral
stage of a BNS merger and which would give a larger phase
shift due to the additional orbital momentum decay.

The NS oscillations were calculated using three methods.
In asteroseismology, fluid oscillations, including g-, f- and
p-modes, have been extensively studied in Newtonian
gravity [1]. In compact objects where general relativistic
effects are important, the canonical ODEs for nonradial
oscillation were proposed by [2] and reformulated by
Refs. [3,49] in full general relativity and by Ref. [57]
utilizing the relativistic Cowling approximation.
We first compared Newtonian calculations with both the

widely used relativistic Cowling approximation and the
linearized relativistic formulation for the f-mode of 3
analytic solutions and also the SLy4 EOS. Due to the finite
densities at the NS surface, the analytic incompressible (Inc)
solution is manifestly different from those of the analytic
Tolman VII (T VII) and Buchdahl (Buch) as well as the

FIG. 11. Deviations of various estimations of g-mode frequencies from fully general relativistic calculations. The left, middle and right
panels show the Cowling approximation and the fits of Eq. (21) and (22), respectively. Colored lines correspond to cases with c2s ¼ 1=3
while gray lines show results with higher values of c2s .

FIG. 12. The left (right) panel shows the g-mode frequency (damping time) versus mass for hybrid NSs modeled with χEFT and the
CSS parametrization. Colored lines correspond to cases with c2s ¼ 1=3 while gray lines show results with higher values of c2s .
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SLy4 EOS. Although both the Newtonian and approximate
Cowling calculations tend to overestimate f-mode frequen-
cies, the Newtonian calculation performs extremely well
in low mass NSs and better than the Cowling approximation
in canonical mass NSs. However, the Newtonian approxi-
mation becomes worse than the Cowling approximation in
the highest mass NSs. This is reasonable since the
Newtonian calculation keeps gravitational perturbations,
which the Cowling approximation ignores. However, for
massive and extremely compact NSs, relativistic corrections
overwhelm the corrections due to gravitational perturba-
tions. Since we require accurate results to formulate EOS-
insensitive and quasiuniversal relations with the compact-
ness, tidal deformability and/or moment of inertia, further
calculations are only performed in the full linearized general
relativistic limit.
Previous work has studied f-mode frequencies and

damping times, and proposed EOS-insensitive correlations
with compactness β and tidal deformability Λ, of both
hadronic and pure quark (self-bound) stars for a relatively
few number of EOSs. We have checked these formulas for a
much more exhaustive sampling of equations of state
employing a piecewise polytrope scheme to model high
densities, and proposed more accurate correlations. In
addition, we extended these studies to hybrid stellar
configurations consisting of quark cores and hadronic
exteriors, showing that correlations established for purely
hadronic stars also fit general hybrid configurations.
Always enforcing both causality and lower and upper
maximum mass limits (i.e., 2M⊙ < Mmax < 2.6M⊙),
f-mode frequencies lie in the range 1.3–2.8 kHz and
damping times in the range 0.1–1 s for all configurations.
The f-mode frequency of pure quark stars with canonical
masses depends relatively weakly on mass, similarly to the

mass-dependence of the radius of hadronic NSs. Whereas
the f-mode frequencies of hadronic NSs increase smoothly
with mass, hybrid NSs with strong first order transitions
can result in twin star configurations which have different
f-mode frequencies for the same mass. We note that low
mass stars (≈1M⊙) with high f-mode frequencies
(f ≳ 2.1 kHz) can only be achieved without the existence
of a crust, i.e., only for self-bound (pure quark) stars, just as
the radius of a 1M⊙ NS with a normal crust cannot be
smaller than ≈10.5 km given constraints from the PNM
calculation. Note that this bounds depends weakly on the
choice of EOS parametrizations. By exploring parametri-
zations other than PP3, we found it might be lowered to
10.2 km. If such large frequencies are observed, it would be
an indication of a very small radius, and evidence for the
existence of pure quark stars.
Employing a range of parametrizations covering the

allowed physical limits, we find that the dimensionless f-
mode frequency is proportional to β5=4 for hadronic and
hybrid NS. In contrast, pure quark stars follow Ωf ∝ β3=2

which is found for analytic solutions in the Newtonian
approximation. These scalings are shown to be accurate to
about the 8% level, but more accurate power-law fits for all
three types of stars are given. Although our fits to hadronic
and hybrid stars are of similar accuracy to previous work,
we verified their applicability to a much broader range of
underlying EOSs. Our fits for quark stars, in addition, are
superior to previous work.
We verified that the f-mode and its damping time

correlate even more strongly (to better than 1% accuracy)
with higher-order radial moments of NSs compared to β,
even for hybrid and pure quark stars. These correlations
with higher order moments are known as the Ī − Λ −Ωf
relations [7]. We found that the Λ −Ωf correlation is

FIG. 13. The g-mode frequencies νg;max of maximum mass hybrid configurations are shown as black contours using the hadronic
N3LO-cen chiral EFT EOS, with dotted lines representing the �σ uncertainties in the hadronic EOS. Intermediate frequency values are
indicated by blue shading. Red contours indicate Mmax.
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slightly more accurate than the Ī −Ωf correlation, reaching
0.1% accuracy for low mass hybrid stars with large quark
cores. Our fitting formulas have similar accuracy to
previous works but are applicable to wider range of NS
masses and much larger samples of EOSs.
We discovered an abnormal f-mode in hybrid NSs

displaying the twin star phenomenon with central pressures
just above the quark-hadron transition pressure pt. These
exhibit manifestly different profiles of fluid and metric
perturbation amplitudes. Canonical f-modes have no nodes
for both fluid and metric perturbation amplitudes, e.g.
Fig. 14, left upper panel, and Fig. 9, lower two panels. As
the quark core first develops, the amplitude V becomes
discontinuous and flips its sign at the quark-hadron inter-
face, while the amplitudesH0, X andW form nodes close to
the interface (the 1-node II state). With increasing central
pressure and quark core size, the nodes in H0, X and W
eventually disappear, while V simultaneously forms a node
(the 1-node I state. Further increases in central pressure lead
to the disappearance of the node in V and normal 0-node
behavior is restored. However, directly probing number of
nodes is impossible at present. The only potential observ-
able is its eigenfrequency. In both 1-node cases, the f-mode
frequency moderately deviates from the Ī − Λ −Ωf uni-
versal relation (the only significant violations we have
found), and also a gap forms in the f-mode frequency
spectrum. This might provide an opportunity to directly
observe the existence of a strong first order transition.
Although the examples studied in this paper are limited to
the unobservable range Mt < 1M⊙, it is remotely possible
that a stiffer EOS above about 1.5–2ns could provide
suitable conditions for obtaining the twin star phenomenon

with Mt > 1M⊙. To our knowledge, we are the first to
report the existence of this special 1-node behavior of the
f-mode.
The discontinuous g-mode frequency (which requires the

existence of a discontinuity in the density) depends
strongly on the magnitudes of both the transition density
and its discontinuity. On the other hand, for a given set of
EOS parameters, it depends weakly on the stellar mass.
Uncertainties in the low-density hadronic EOS contribute
less than about 5% uncertainty to the g-mode frequency.
Due to causality and maximum mass constraints, the
discontinuous g-mode frequency has an upper bound of
about 1.5 kHz. However, if the squared sound speed in the
inner core is restricted to c2s ≤ 1=3, the discontinuous g-
mode can only reach about 0.8 kHz, which is significantly
lower than the f-mode frequency of 1.3–2.8 kHz. Also, in
this eventuality, the g-mode gravitational wave damping
time is usually extremely long, being larger than 104 s
compared to about 102 s for an inner core in which c2s ≤ 1,
and is also large compared with the usual f-mode damping
time, 0.1-1 s. We found an improved analytic fit for the g-
mode frequency that depends only on M=R;Mt=M;Rt=R
and Δε=εt and which is otherwise insensitive to the hybrid
EOS parameters εt and c2s as well as the assumed hadronic
EOS. We found the Cowling approximation is accurate to
within 20%, which is significantly less accurate than
previously estimated, due to our consideration of a larger
variety of first order transitions and realistic NS masses.
Our analytic approximation has a similar accuracy. We also
established a more accurate fit based on Mmax stars that
depends on pt;Δε=εt, and cs, and showed that for
physically plausible situations, νg < 1.25 kHz.
In this work, we assume the perturbed fluid is ideal.

Superfluidity inside the NS introduces an additional flow
component which is discussed in other works, such as
Ref. [86]. The fluid perturbations are also assumed to be
barotropic, which holds only when matter is adiabatic and
always in equilibrium except for the phase conversion
between quarks and hadrons. However, we checked in
some typical cases where a phase transition occurs in a
hybrid star [15], a nonbarotropic EOS involving compo-
sition or temperature gradients does not lead to substantial
modification of our present results for frequencies and
damping times of f-modes. Nonadiabatic effects, such as
from the neutrino Urca processes during the inspiral and
merger phases, could introduce significant additional
damping due to bulk viscosity [87,88].
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FIG. 14. Metric perturbation amplitudes, fluid perturbation
amplitudes for nonradial oscillations with l ¼ 2 with (dashed
curves) and without (solid curves) the Cowling approximation,
and static metric functions (dotted curves) inside a 1.4M⊙ NS
computed with the Sly4 EOS [85]. H0, H1 and K are in units of
εs ¼ 152.26 MeV fm−3, X is in units of ε2s , andW, V, ν and λ are
dimensionless. Only real parts of the perturbation amplitudes are
plotted.
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APPENDIX: OSCILLATION FREQUENCIES AND
DAMPING TIMES

Thorne et al. first studied NS oscillations coupled with
gravitational radiation [2]. Oscillations of NS are expected
to involve linear variations of matter and metric in various
spherical harmonics. The angular decomposition of varia-
tions will contain even and odd parity components. Odd
parity variations have a trivial zero mode which corresponds
to differential rotation, unless axial symmetry is broken by
rotation which result in r-modes [89]. In this work, we study
only even parity perturbation of the Regge-Wheeler metric,

ds2 ¼ −eνðrÞð1þ rlH0ðrÞeiωtYlmðϕ; θÞÞc2dt2
þ eλðrÞð1 − rlH0ðrÞeiωtYlmðϕ; θÞÞdr2
þ ð1 − rlKðrÞeiωtYlmðϕ; θÞÞr2dΩ2

− 2iωrlþ1H1ðrÞeiωtYlmðϕ; θÞdtdr ðA1Þ

whereH0,H1, and K are metric perturbation functions. ω is
the complex oscillation frequency; its real component is the
oscillation frequency and its imaginary component is the
inverse of the damping (growth) time if it is positive
(negative). The metric perturbation functions inside the star
must match those outside the star at the stellar surface.

1. Perturbations inside the NS

Fluid perturbation vectors inside the star can be decom-
posed in a basis of spherical harmonics in terms of Yl

m,
∂θYl

m and ∂ϕYl
m. For nonrotating neutron stars, odd parity

fluid perturbations have a trivial solution which corre-
sponds to differential rotation, while fluid perturbations
with even parity are described by the Lagrangian displace-
ment vectors

ξr ¼ rl−1e−λ=2WYl
meiωt

ξθ ¼ −rl−2V∂θYl
meiωt

ξϕ ¼ −
rl−2

sin2θ
V∂ϕYl

meiωt; ðA2Þ

which define the fluid perturbation amplitudesW and V. In
case of radial oscillations when l ¼ 0, the angular fluid
perturbation V is irrelevant due to the vanishing of ∂θ and
∂ϕ. Perturbations of a spherical star have four degrees of
freedom: three coming from the metric perturbations,
which will be reduced by one applying Einstein’s equation,
δG01 ¼ 8πδT01, and two coming from fluid perturbations.
An additional fluid perturbation amplitude X, related to
Lagrangian pressure variations, is defined according to

Δp ¼ −rle−ν=2XYl
meiωt: ðA3Þ

In order to avoid potential singularity in the eigenvalue
problem, Lindblom et al. pick the four independent

variables to be H1, K, W, X [3,49] and evaluate the two
remaining functions H0 and V according to

H0 ¼ f8πr2e−ν=2X − ½ðnþ 1ÞQ − ω2r2e−ðνþλÞ�H1

þ ½n − ω2r2e−ν − QðQeλ − 1Þ�Kgð2bþ nþ QÞ−1;

V ¼
�

X
εþ p

−
Q
r2
eðνþλÞ=2W − eν=2

H0

2

�
eν=2

ω2
; ðA4Þ

where n ¼ ðl − 1Þðlþ 2Þ=2, Q ¼ bþ 4πGr2p=c4 and
b ¼ Gm=ðrc2Þ with mðrÞ the mass interior to r. By
expanding Einstein’s equation to first-order, homogeneous
linear differential equations for H1, K, W and X can be
found [49],

r
dH1

dr
¼−½lþ1þ2beλþ4πr2eλðp− εÞ�H1

þeλ½H0þK−16πðεþpÞV�;

r
dK
dr

¼H0þðnþ1ÞH1

þ½eλQ−l−1�K−8πðεþpÞeλ=2W;

r
dW
dr

¼−ðlþ1Þ½Wþleλ=2V�

þ r2eλ=2
�

X
ðεþpÞc2s

e−ν=2þH0

2
þK

�
;

r
dX
dr

¼−lXþ εþp
2

eν=2
�
ð3eλQ−1ÞK−

4ðnþ1ÞeλQ
r2

V

þð1−eλQÞH0þðr2ω2e−νþnþ1ÞH1

þ
�
2ω2eλ=2−ν−8πðεþpÞeλ=2

þ r2
d
dr

�
e−λ=2

r2
dν
dr

��
W

�
: ðA5Þ

where the adiabatic sound speed cs of NS matter under
oscillation is different from the equilibrium sound speed ce
[13,14]. Here, we only consider zero-temperature EOSs
without varying chemical composition, so that cs ¼ ce. The
central boundary conditions for the perturbation amplitudes
are

Wð0Þ ¼ 1;

Xð0Þ ¼ ðε0 þ p0Þeν0=2

×

��
4π

3
ðε0 þ 3p0Þ −

ω2

l
e−ν0

�
Wð0Þ þ Kð0Þ

2

�
;

H1ð0Þ ¼
lKð0Þ þ 8πðε0 þ p0ÞWð0Þ

nþ 1
: ðA6Þ

where ν0 ¼ νð0Þ and the last boundary condition is
achieved by solving the two trial solutions with
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Kð0Þ ¼ �ðε0 þ p0Þ and then linearly constructing the
correct solution satisfying the outer boundary condition
XðRÞ ¼ 0 (corresponding to no pressure variations at the
surface). Note that H0ð0Þ ¼ Kð0Þ by construction. For a
hybrid NS (see Sec. III), we assume no chemical changes at
the transition boundary [82,90]. Thus, H1, K, W, X should
all be continuous at the transition, whileH0 and V are fixed
by Eq. (A4). In this paper, we confine the remainder of our
discussion to nonradial oscillations with l ¼ 2, so that V
andW, which are defined only inside a star, are dimension-
less functions.
As an example, Fig. 14 shows the static and metric

perturbation amplitudes inside a 1.4M⊙ NS using the SLy4
EOS. The central pressure is pc ¼ 85 MeV fm−3, the
radius is R1.4 ¼ 11.72 km, and the corresponding f-mode
frequency is ω ¼ ð1.2146 × 104 þ 5.206iÞ s−1, determined
as in Sec. A 2. Since the imaginary part of the perturbation
is very small compared with the real part, Fig. 14 shows
only the real parts of the perturbation amplitudes. The
Cowling approximation gives ω ¼ 1.5130 × 104 s−1,
about 25% larger. The fluid perturbation amplitudes with
the Cowling approximation are in error by up to a factor of
2 at stellar surface for W and V, and by about 25% at the
center for X, as shown in Fig. 14.
Outside the NS, Eq. (A5) reduces to 2 first-order

equations for H1 and K; W and V are not defined in this
region. These equations can be reformulated into a single
Schrodinger-like equation known as the Zerilli equation,

d2Z=dr�2 ¼ ðVZðrÞ − ω2ÞZ; ðA7Þ

by defining [91]

 
KðrÞ
H1ðrÞ

!
¼
 
gðrÞ 1

hðrÞ kðrÞ

! 
Zðr�Þ=r

dZðr�Þ=dr�
!
;

gðrÞ ¼ nðnþ 1Þ þ 3nbþ 6b2

ðnþ 3bÞ ;

hðrÞ ¼ ðn − 3nb − 3b2Þ
ð1 − 2bÞðnþ 3bÞ ;

kðrÞ≡ dr�

dr
¼ 1

1 − 2b
; ðA8Þ

and an effective potential

VZðrÞ¼ð1−2bÞ2n
2ðnþ1Þþ6n2bþ18nb2þ18b3

r2ðnþ3bÞ2 : ðA9Þ

Note that here b ¼ GM=ðc2rÞ since mðr > RÞ ¼ M. H0

can be fixed by a simplified form of the last of Eq. (A4),

H0

¼½ω2r2−ðnþ1Þb�H1þ½nð1−2bÞ−ω2r2þbð1−3bÞ�K
ð1−2bÞð3bþnÞ :

ðA10Þ

Figure 15 shows the metric perturbation amplitudes
outside the NS modeled in Fig. 14. In the far-field limit,
the solution becomes that of oscillating gravitational
radiation. The behavior of the metric perturbation ampli-
tudes shown in Figs. 14 and 15 is generic for f-mode
(n ¼ 0) and relatively insensitive to the EOS.

FIG. 15. The same as Fig. 14 except outside the 1.4M⊙ SLy4 EOS NS. Note the change of scale at r ¼ 50 km.

TIANQI ZHAO and JAMES M. LATTIMER PHYS. REV. D 106, 123002 (2022)

123002-20



2. Determining the oscillation frequency

Our goal is to find the frequencies of eigenmodes that
correspond to oscillations. The lowest order mode corre-
sponds to the f-mode generally with zero node, while
solutions of higher radial nodes correspond to the g- and p-
modes. All the mode solutions should satisfy the correct
boundary condition at infinity should be “free,” in other
words, at infinity, the gravitational radiation field should be
purely outgoing. We solve the Zerilli equation for
r ≤ 25ω−1, which is found to be adequate. For larger r,
the solution of Zerilli equation Z can be decomposed into
incoming (Zþ) and outgoing (Z−) radiation as 

ZðωÞ
dZ=dr�

!
¼
 

Z−ðωÞ ZþðωÞ
dZ−=dr� dZþ=dr�

! 
A−ðωÞ
AþðωÞ

!
;

Z−¼ e−iωr
�
�
α0þ

α1
r
þα2
r2

þOðr−3Þ
�
;

dZ−

dr�
¼−iωe−iωr�

�
α0þ

α1
r

þα2þ iα1ð1−2bÞ=ω
r2

þOðr−3Þ
�
;

α1¼
−iðnþ1Þα0

ω
;

α2¼
½−nðnþ1Þþ iMωð3=2þ3=nÞ�α0

2ω2
; ðA11Þ

where AþðωÞ and A−ðωÞ are the amplitudes of incoming
and outgoing radiation, respectively, Zþ is the complex
conjugate of Z−. The amplitude of incoming radiation
AþðωÞ vanishes for physical eigenmodes. α0 can be any
complex number which represent an overall phase.
In order to determine ω, we need to solve for the root of

AþðωÞ ¼ 0 in the complex plane. A straightforward, but
inefficient, way would be to use a complex root finding
algorithm. With the help of EOS-insensitive relations
between ν ¼ Re½ω�=ð2πÞ and the moment of inertia (see
Sec. V), three digits accuracy can be achieved for the
f-mode within 8 Newton–Raphson iterations. Other tech-
niques are needed to guess initial estimates for p- and
g-modes. Note that the imaginary part of the eigenfrequency

is usually small (< 1=1000 the magnitude of the real part)
for f-, g- and p-modes. As a result, Im½Zðr�Þ� ≪ Re½Zðr�Þ�
as well. Therefore, it is possible to approximately determine
the complex eigenfrequency by approximating complex Aþ
near the eigenfrequency with

AþðωÞ ≈ A0 þ A1ωþ A2ω
2 ¼ 0; ðA12Þ

where A0, A1 and A2 are complex constants fixed by AþðωÞ
along the real axis of ω. Solving this quadratic equation
gives an estimate for the real and imaginary parts of
eigenfrequency. This method avoids using a complex
root-finding algorithm and is considerably more efficient.
Another simplified method to evaluate eigenmodes is to

use the WKB approximation [4,92]. The outside solution is
approximated by a WKB wave-function. Perturbation
functions near the NS surface can be used to fix amplitude
of incoming and outgoing radiation without solving the
Zerilli equation. We have verified that these two approxi-
mate methods agreed very well for low-damping modes
where the imaginary part is small compared with the real
part. Here, we use the interpolation method to determine an
initial guess for ω to be used in the full solution.
Fig. 1 shows the f-mode frequency for the SLy4 EOS

used in Figs. 14 and 15 as a function of neutron star
compactness β. Note the approximately linear behavior
with β3=2, a universal scaling that becomes apparent when
examining analytic results in Newtonican geometry with
simple EOSs, as discussed in the next section.
A widely used approximation in the calculation of

oscillation frequencies, the Cowling approximation,
ignores the metric perturbation K, H1 and H2 in
Eqs. (A4)–(A6). This reduces the 4 complex first-order
ODEs Eqs. (A5) to 2 real first-order ODEs and results in no
gravitational radiation damping, see Eqs. (19) and (20) in
Ref. [15]. In addition, in this approximation the Zerilli
equation for metric perturbations outside the NS, Eq. (A7),
can be ignored which greatly simplifies the calculation.
However, since the Cowling approximation introduces
f-mode frequency errors of up to 30% [93], as shown in
Fig. 1, it is not suitable for the study of the high accuracy
universal relations sought in this work.
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