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Finite size effects in a neutron star merger are manifested, at leading order, through the tidal
deformabilities of the stars. If strong first-order phase transitions do not exist within neutron stars, both
neutron stars are described by the same equation of state, and their tidal deformabilities are highly
correlated through their masses even if the equation of state is unknown. If, however, a strong phase
transition exists between the central densities of the two stars, so that the more massive star has a phase
transition and the least massive star does not, this correlation will be weakened. In all cases, a minimum
deformability for each neutron star mass is imposed by causality, and a less conservative limit is imposed
by the unitary gas constraint, both of which we compute. In order to make the best use of gravitational wave
data from mergers, it is important to include the correlations relating the deformabilities and the masses as
well as lower limits to the deformabilities as a function of mass. Focusing on the case without strong phase
transitions, and for mergers where the chirp mass M ≤ 1.4 M⊙, which is the case for all observed double
neutron star systems where a total mass has been accurately measured, we show that the ratio of the
dimensionless tidal deformabilities satisfy Λ1=Λ2 ∼ q6, where q ¼ M2=M1 is the binary mass ratio; Λ and
M are the dimensionless deformability and mass of each star, respectively. Moreover, they are bounded by
qn− ≥ Λ1=Λ2 ≥ qn0þþqn1þ , where n− < n0þ þ qn1þ; the parameters depend only on M, which is
accurately determined from the gravitational-wave signal. We also provide analytic expressions for the
wider bounds that exist in the case of a strong phase transition. We argue that bounded ranges for Λ1=Λ2,
tuned toM, together with lower bounds to ΛðMÞ, will be more useful in gravitational waveform modeling
than other suggested approaches.
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I. INTRODUCTION

Finite size effects in a binary neutron star merger are
manifested, to lowest order, through the tidal deformabil-
ities of the individual stars. The tidal effects are imprinted
in the gravitational-wave signal through the binary tidal
deformability [1,2]

Λ̃ ¼ 16

13

ð12qþ 1ÞΛ1 þ ð12þ qÞq4Λ2

ð1þ qÞ5 ; ð1Þ

where q ¼ M2=M1 ≤ 1 is the binary mass ratio. The
dimensionless deformability of each star is

Λ½1;2� ¼
2

3
k2;½1;2�

�
R½1;2�c2

GM½1;2�

�5

; ð2Þ

where k2 is the tidal Love number [1–3], which is the
proportionality constant between an external tidal field
and the quadrupole deformation of a star. R½1;2� and M½1;2�
are the radii and masses of the binary components,

respectively. k2 can be readily determined from a first-
order differential equation simultaneously integrated with
the two usual TOV structural equations [4,5] and has
values ranging from about 0.05 to 0.15 for neutron stars.
For black holes, k2 ¼ 0. The tidal deformations of the
neutron stars result in excess dissipation of orbital energy
and speed up the final stages of the inspiral. Tidal
deformations act oppositely to spin effects, which tend
to be more important during earlier stages of the observed
gravitational wave signal.
The gravitational waves from the recently observed

merger of two neutron stars, GW170817, were analyzed
by the LIGO/VIRGO collaboration [6] (hereafter LVC),
and subsequently reanalyzed by De et al. [7] (hereafter
DFLB3) and also the LIGO/VIRGO collaboration [8]
(Hereafter LVC2). In the LVC analysis, the gravitational-
wave signal was fitted to the Taylor F2 post-Newtonian
aligned-spin model [9–14] which has 13 parameters. 7 of
those parameters are extrinsic, including the sky location,
the source’s distance, polarization angle and inclination,
and the coalescence phase and time. The remaining 6
parameters are intrinsic, including the masses M1 and M2,
dimensionless tidal deformabilities Λ½1;2�, and the compo-
nent’s aligned spins χ½1;2� ¼ cJ½1;2�=GM2

½1;2�, where J is the
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angular momentum. The reanalysis of DFLB3 differed
from that of LVC chiefly in that electromagnetic observa-
tions were used to fix the source location and distance and
in the adoption of the relation Λ1=Λ2 ¼ q6, expressing the
assumption that the two stars have a common equation of
state (EOS). They justified this assumption using para-
meterized hadronic EOSs modeled using a fixed neutron
star crust and three high-density polytropic segments
whose parameters were restricted by causality and a
minimum value of an assumed neutron star maximum
mass. DFLB3 also employed the causal lower limit to
ΛðMÞ in their analysis. In contrast, the analysis of LVC
assumed uncorrelated priors for Λ1 and Λ2, thereby
assuming that the two stars did not have the same equation
of state, and did not consider causality-violating values of
Λ1 or Λ2. DFLB3 showed that models including correla-
tions were favored by odds ratio ≳100 over models using
uncorrelated deformabilities, and, furthermore, that includ-
ing deformability correlations reduced the 90% confidence
upper limit to the binary deformability by about 20%. The
latter result was confirmed by LVC2, who reanalyzed the
GW170817 signal including deformability correlations
using two different prescriptions.
It is reasonable to assume that future investigations of

neutron star mergers will treat Λ1 and Λ2 as correlated
parameters, irrespective of which waveform model is used.
The purposes of this paper are (1) to replace the approxi-
mate result Λ1=Λ2 ¼ q6 with analytic bounds suitable for
use in existing methods of fitting gravitational-wave signals
of neutron star mergers, (2) to establish realistic lower
limits to ΛðMÞ, (3) to compare our method with one
proposed by Yagi and Yunes [15], and (4) to determine
modifications to deformability correlations due to the
possible existence of a strong first order phase transitions
in the density range between the central densities of the two
stars. In this case, the more massive star will be considered
to be a hybrid star, in contrast to the lower mass star which
we refer to as a hadronic star. This oversimplified notation
harks back to the possibility of a hybrid hadronic-quark
matter star in which the quark matter-hadronic matter
interface has a surface tension too large to permit a smooth
Gibbs phase transition. In the event of a strong first order
phase transition, the more massive star can have a radius
and tidal deformability much smaller than the lower mass
star, even though their masses are nearly equal. This
weakens the correlations otherwise evident between the
tidal deformabilities and masses.
In addition to bounds on the deformability ratio Λ1=Λ2,

future analyses will benefit from the incorporation of
absolute lower bounds to ΛðMÞ available from consider-
ation of the maximally compact EOS [16,17], which are
limited by causality and the observed minimum value of the
neutron star maximum mass. This EOS assumes that the
matter pressure is essentially zero below a fiducial density
no that is a few times the nuclear saturation density, and that

above this density the sound speed is equal to the speed of
light. However, we also determine a more realistic and less
extreme lower bound in which the pressure in the vicinity
of the nuclear saturation density is instead limited from
below by the unitary gas constraint thought to be applicable
for neutron star matter [18]. Upper bounds to ΛðMÞ are
available from nuclear theory and experiment, but are
unfortunately model-dependent, and astrophysical obser-
vations also cannot yet provide accurate upper bounds. We
will, however, explore the sensitivity of both lower and
upper deformability bounds to assumptions concerning the
minimum pressure of neutron star matter and also the
minimum and maximum values assumed for the neutron
star maximum mass.
This paper is organized as follows: Sec. II describes the

most likely masses and spins for merging neutron star
systems, and Sec. III reviews how tidal deformabilites are
defined and calculated. Section IV outlines the parame-
trized equations of state used in this paper and the resulting
tidal deformabilities and their bounds, while Sec. Voutlines
results for the binary tidal deformabilities and their bounds.
Section VI establishes the correlations of tidal deform-
abilities with masses and compares our approach with other
work. The lower bounds on deformabilities from causality
are summarized in Sec. VII, and those from the unitary gas
and neutron matter constraints are discussed in Sec. VIII.
Deformability constraints for hybrid stars are established in
Sec. IX. We summarize our conclusions in Sec. X.

II. LIKELY MASS AND SPIN RANGES
FOR OBSERVABLE MERGING NEUTRON

STAR SYSTEMS

It seems likely that future observations of merging
neutron stars, like GW170817, will have component
masses and spins similar to those of known double neutron
star systems (DNS). Known systems contain at least one
pulsar and their masses and spins have been determined by
pulsar timing. There are 9 systems in which both masses are
accurately determined, and 7 others for which only the total
mass MT ¼ M1 þM2 is known with precision [19].
Determination of q and M for the former systems is
straightforward. However, even in the latter cases, some
information about M and q can be established, using the
theoretical paradigm that the minimum neutron star mass is
≳1.1 M⊙ (for further discussion, see Ref. [17]). Note that
we can write

M ¼ M3=5
1 M3=5

2

M1=5
T

¼ M2=5
T

�
1 −

M2

MT

�
3=5

M3=5
2 ;

q ¼ M2

M1

¼ M2

MT −M2

ð3Þ

so the restriction 1.1M⊙≤M2<MT=2 determines MðqÞ.
Values for M and q for known DNS are shown in Fig. 1.
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Two systems have q < 0.9, but also have gravitational
decay times τGW longer than the age of the universe
and so may not be representative of observed merging
systems.
In the same way, the spin parameters χ ¼ 2πIc=ðGM2PÞ

of the pulsars in these systems, where P is the spin
period and I the moment of inertia, can be estimated.
One system, PSR 3039-0737 [20], contains two pulsars, so
there are 10 pulsars with known masses and spins in
these systems. Using the piecewise polytrope ansatz (see
below) in the slow-rotation limit, it has been determined
[21] that

I
MR2

≃ 0.01þ 1.2β
1
2 − 0.1839β − 3.735β

3
2 þ 5.278β2; ð4Þ

where β ¼ GM=Rc2 is the compactness parameter and R is
the circumferential stellar radius, assuming that the mini-
mum neutron star maximum mass is 1.97 M⊙. Using
R ≃ 12 km, estimates for χ are also displayed in Fig. 1.
These estimates do not reflect the fact that the spins at
merger in almost all systems will be much smaller than
their current values. For example, PSR 1913þ 16A, with
M ¼ 1.23 M⊙, has τGW _P ≃ 1.3P [22]. Note that one star
(J1807–2500B, which might not even be a DNS system
[23]) has χ ≃ 0.12, much larger than the other 15 cases, but
exists in a system with τGW longer than the Universe’s age
and so may not be typical of an observed merging system.
It therefore seems reasonable to assume that potential

future mergers, like GW170817, will have 1 M⊙ ≤ M ≤
1.3 M⊙, 0.9 ≤ q ≤ 1 and component spin parameters
χ ≲ 0.02. Calculation of the tidal deformabiities and
moments of inertia in the slow-rotation limit seems
justified.

III. CALCULATION OF TIDAL
DEFORMABILITIES

The dimensionless tidal deformabiity parameter Λ can
be calculated in the small quadrupole deformation limit
from [4]

Λ ¼ 16g
15

½4β2ð3 − 9β þ 4β2 þ 6β3Þ þ 3g lnð1 − 2βÞ
− 2βzRð1 − βÞð1 − 2βÞð3 − 6β − 2β2Þ�−1 ð5Þ

where

g ¼ ½2βð1þ zRÞ − zR�ð1 − βÞ2: ð6Þ

zR ¼ zðRÞ is the surface value of the variable zðrÞ deter-
mined by the first-order equation [5]

dz
dr

¼ f1 − f2 þ f3
rðr − 2Gm=c2Þ ð7Þ

with the boundary condition at the origin zðr ¼ 0Þ ¼ 0, and

f1 ¼ zr

��
1 −

2Gm
rc2

�
ð4þ zÞ þ 1

�
−
8Gm
c2

;

f2 ¼
4G2

c4
ðmþ 4πpr3=c2Þ2

r − 2Gm=c2
;

f3 ¼
4πGr3

c4

�
ð2þ zÞðp − εÞ þ 5εþ 9pþ εþ p

c2s=c2

�
: ð8Þ

m, p and ε are the enclosed mass, pressure and mass-energy
density at the radius r, respectively, related by the usual
general relativistic structure equations. Note the appearance
of the sound speed cs ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂p=∂εp
in Eq. (8). In the case of

FIG. 1. Left: Binary mass ratio q as a function of chirp massM for known double neutron star (DNS) systems [19].M for GW170817
is indicated by the vertical dashed line. Right: Spin parameters for pulsars in known DNS systems. For both figures, curves represent
possible values for systems in which the total mass, but not q, is accurately known; the minimum value of q is determined by
M2 > 1.1 M⊙. Red curves and points indicate systems for which the merger timescale τGW is longer than the age of the Universe.
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a first-order phase transition in which a discontinuity Δεt
occurs at the radius rt where the pressure and enclosed
mass are pt and mt, respectively, and cs ¼ 0 within the
transition, a correction term Δz ¼ −4πΔεtr3t =mtc2 [5]
must be added to z at the radius rt. In the case of small
β ≲ 0.1, there are severe cancellations in Eq. (5), and a
Taylor expansion in β [5] is utilized for accuracy. However,
we only consider neutron stars with M ≥ 1.1 M⊙ for
which β ≳ 0.11.

IV. PARAMETRIZED EQUATIONS OF STATE
AND THE TIDAL DEFORMABILITY

The intrinsic parameters describing neutron stars in
gravitational waveform modeling include the component
masses, spins and tidal deformabilities. Spins are described
by the dimensionless spin parameters χ1 and χ2, while the
deformabilities are described by the parameters Λ1 and Λ2

for nonspinning stars. For nonspinning stars, Λ is deter-
mined only byM for a given EOS. Even though the EOS is
a priori unknown, it is nevertheless bounded by general
considerations such as thermodynamic stability, causality,
the necessity to produce stars with a minimum value of
Mmax, and nuclear physics considerations. Therefore,
values of Λ2 and Λ1, for specified values of m1 and m2,
must also be bounded. These bounds appear as correlations
among Λ1, Λ2, M1 and M2.
In their analysis of GW170817, LVC did not take any

correlations among Λ1, Λ2, M1 and M2 into account.
DFLB3, for reasons summarized below, adopted the corre-
lation Λ1=Λ2 ¼ q6 and were able to show that models with
this deformability correlation were favored relative to
models without it by odds ratio greater than 100.
Furthermore, they showed that including deformability
correlations generally reduced the 90% confidence upper
limit to the binary deformability by about 20% (a result
confirmed by LVC2). However, since the EOS is uncertain,
the ratio Λ1=Λ2 has a finite range around the value q6.
LVC2 used the methodology of Refs. [15,24] to estimate
this range statistically from fits to realistic EOSs. Instead
we will determine bounds to Λ1=Λ2 in an EOS-insensitive
fashion, using causality and the observed minimum value
for the neutron star maximum mass. We will compare this
approach with that adopted by LVC2 in Sec. VI.
We will bound Λ1=Λ2 as a function of q using thousands

of equations of state computed using the piecewise-poly-
trope methodology [21,25–27]. We find that these bounds
can be expressed in terms of particularly simple analytic
forms. Although Ref. [28] argues that piecewise polytropes
are less accurate than other methods, such as spectral
decomposition, accuracy is not a consideration. Rather, we
are only interested in the allowed range of deformabilities.
In fact, since the spectral decomposition technique smooths
equations of state near segment boundaries, it actually
misses some possibilities compared to piecewise poly-
tropes and may understate the true bounds. The same is true

for the QCD-motivated scheme of Ref. [29] which requires
all EOSs to asymptotically approach cs ¼ c=

ffiffiffi
3

p
at high

densities.
Read et al. [25] found that high-density cold equations of

state could be relatively faithfully modeled with three
polytropic segments coupled to a crust equation of state.
The crust equation of state applies for densities below
n0 ∼ ns=2, where ns ¼ 0.16 fm−3 is the nuclear saturation
density; this region is dominated by nuclei in a Coulomb
lattice together with a neutron liquid in chemical potential
and pressure equilibrium. The details of the crust equation
of state are not important as differences among existing
models produce very small effects for the structure of
stars more massive than a solar mass. Each segment is
described by the polytropic equation of state p ¼ Kinγi for
the region ni−1 < n < ni for i ¼ 1–3 where p is the
pressure. Knowledge of n0 and p0, and continuity of p
and the energy density ε at the boundaries, determines Ki
and leaves 6 free parameters, ni and γi for i ¼ 1–3, or,
equivalently, ni and pi. Within the polytropic segment i, the
energy density is given by

ε¼ εi−1
n

ni−1
þp−pi−1ðn=ni−1Þ

γi − 1
; ni−1 ≤ n ≤ ni: ð9Þ

The polytropic indices and the energy densities at the
boundaries are given by

εi ¼
pi

γi − 1
þ
�
εi−1 −

pi−1

γi − 1

�
ni
ni−1

;

γi ¼
lnðpi=pi−1Þ
lnðni=ni−1Þ

i ¼ 1; 2; 3: ð10Þ

Reference [25] made the additional observation that a
wide variety of equations of state could be accurately
described with a single set of boundary densities:
n3 ≃ 2n2 ≃ 4n1 ≃ 7.4ns. Assuming these values leaves
three free parameters pi for i ¼ 1–3. We stress that a
specific equation of state could be more accurately modeled
with a larger number of segments, but we are chiefly
concerned with achieving an exhaustive coverage of
pressure-energy density (or mass-radius) space. We have
shown that adding more segments does not expand this
coverage significantly for hadronic stars. In Sec. IX, we add
additional parameters to ensure a complete coverage of the
possibility of hybrid configurations.
Some results for neutron star structure with the piecewise

polytrope methodology have been previously reported
[21,27]. We summarize here our specific assumptions:

(i) Neutron stars have hadronic crusts which terminate
at the fixed density n0 ¼ ns=2.7, where p0 ¼
0.2177 MeV fm−3, ε0 ¼ 56.24 MeV fm−3 and e0 ¼
ε0=n0 −mc2 ¼ 9.484 MeV, values obtained by
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interpolating the SLy4 EOS [30]. Here, eðn; xÞ is the
internal energy per baryon and mc2¼939.566MeV.

(ii) The first polytropic segment between n0 and n1 ¼
1.85ns is constrained by neutron matter calculations
[31] such that 8.4 MeV fm−3 ≲ p1 ≲ 20 MeV fm−3

used in our previous studies. However, we deliber-
ately choose here a 50% larger upper bound,
30 MeV fm−3, in order to obtain values of Λ̃ that
arewell above the 90%confidence limit inferred from
the LVC analysis of GW170817. We also consider a
smaller lower limit to p1, 3.74 MeV fm−3, arising
from the unitary gas constraint [18], separately in
Sec. VIII. We note the value of p1 effectively
determines the nuclear symmetry energy Sv and its
slope parameter L at the nuclear saturation density.
Assuming that higher-than-quadratic terms in the
Taylor expansion of the nuclear energy per particle
eðn; xÞ in powers of the neutron excess 1 − 2x are
negligible near n ¼ ns, and also that the proton
fraction x ∼ 0, one has

SV ¼ eðns; 0Þ − eðns; 1=2Þ

¼ e0 þ Bþ p0

n0ðγ1 − 1Þ
��

ns
n0

�
γ1−1

− 1

�
;

L ¼ 3pðns; 0Þ
ns

¼ 3
p0

n0

�
ns
n0

�
γ1−1

; ð11Þ

where B ¼ −eðn; 1=2Þ ≃ 16 MeV is the bulk
binding energy of symmetric matter. We find
using Eqs. (10) and (11) that 2.27 ≤ γ1 ≤ 3.06,
33.4 MeV < SV < 37.5 MeV and 38.9 MeV <
L < 85.3 MeV, approximately the ranges predicted
by nuclear experiments and neutron matter theoreti-
cal calculations [32], except for SV which is about
2 MeV larger due to the polytropic approximation.

(iii) The parameter p2 is limited from above by enforcing
causality (c2s=c2 ¼ ∂p=∂ε ≤ 1) at n2, which results
in the implicit equation for the upper bound to γ2,

γ2;maxðγ2;max − 2Þ

¼
�
ðγ2;max − 1Þ ε1

p1

− 1

��
n1
n2

�
γ2;max−1

: ð12Þ

(iv) The parameter p3 is limited from above by the
condition γ3;max ¼ 1þ ε2=p2. This value guarantees
that causality is violated for the maximum mass
configuration for any p1 and p2, but only configu-
rations with γ3 < γ3;max (and thus p3 < p3;max) that
do not violate causality are ultimately accepted.

(v) The parameters p2 and p3 are limited from below
either by p3 ≥ p2 ≥ p1, which guarantees thermo-
dynamic stability, or the requirement that the maxi-
mum mass exceeds a fiducial value.

The parameters p1, p2 and lnp3 are uniformly sampled
within their respective ranges. The neutron star mass, radius
and tidal deformability are found from integration of the
normal TOV differential equations together with Eq. (7), in
which it is only necessary to specify pðnÞ and dp=dε as
functions of εðnÞ. For each parameter set, we compute a
series of 50 configurations assuming central pressures
in the range ð3 × 10−5 − 2 × 10−3Þ km−2. Note that
1 Mev fm−3 corresponding to 1.32375 × 10−6 km−2. The
lowest central pressure results in stars with M ∼ 0.5 M⊙.
The largest central pressure is always beyond the value
which obtains in the lowest assumed maximum mass
configuration, 1.90 M⊙. (The central pressure of the
maximum mass star decreases with increasing maximum
mass values [33]). The differential equations are solved
using lnp as the independent variable with a variable step-
size 4th-5th order Runge-Kutta scheme. In every case, the
surface pressure is set to 3 × 10−13 km−2. The total mass,
moment of inertia and tidal deformability are insensitive to
the surface pressure, but the radius is not, so we employ
an analytic correction to compensate for nonzero surface
pressures (these are at most 0.1 km in the lowest mass
stars).
The value of the neutron star maximum mass plays an

important role in the allowed ranges of neutron star masses
and radii, as well as in the allowed values of p2 and p3

which constrain the equation of state. The left panel of
Fig. 2 displays allowed masses and radii as a function of the
assumed lower limit to the neutron star maximum mass.
Clearly, larger minimum values of the neutron star maxi-
mum mass prohibit smaller neutron star radii for every
mass and more severely constrain allowed trajectories of
theM − R relation. Nevertheless, the minimum value of p1,
p1;min is an important factor determining the minimum
neutron star radius. We found that if p1;min is reduced to the
unitary gas minimum, 3.74 MeV fm−3, radii of 1.4 M⊙
stars as low as 10.4 km may be achieved for
Mmax ¼ 1.90 M⊙. The maximum neutron star radius is
determined by the maximum value of p1, p1;max but not by
the maximum mass, as the radius is insensitive to the high-
density equation of state. These results straightforwardly
follow from the fact that the pressure in the density range
1 − 2ns, i.e., p1, and R1.4, the radii of 1.4 M⊙ stars, are
known to be highly correlated [34].
The right panel of Fig. 2 shows allowed regions of p as a

function of ε, which show greater restrictions as the mini-
mum value of the neutron star maximum mass is increased.
At lower densities, ε≲ 300 MeV fm−3 (which corresponds
to p ≤ p1), the effect of the maximum mass is small until
Mmax ≳ 2.3 M⊙. Recall that the saturation density ns ≃
0.16 fm−3 corresponds to ε ≃ 150 MeV fm−3. But for higher
densities, the maximum mass constraint becomes important
for smaller values of Mmax.
The dimensionless deformability as a function of M and

R for causally-constrained piecewise polytropes are shown
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in Fig. 3. In this figure, individual configurations are color-
coded according to their radii. Clearly, there are well-
defined upper and lower bounds for ΛðMÞ, with the upper
(lower) bound defined by the stars with the largest
(smallest) radii. Thus, as found for radius bounds, the
upper bound is determined by p1;max and is not sensitive to
the assumed value ofMmax or p1;min, while the lower bound
is determined by both p1;min and Mmax. The lower bound
for ΛðMÞ is an important constraint that should be taken
into account in gravitational waveform modeling of BNS
mergers, and is further explored in Sec. VIII.
The fact that Λ decreases rapidly with M and increases

rapidly with R is not surprising given the formula
Λ ¼ ð2k2=3Þβ−5. However, we find for moderate masses

that Λ ∝ β−6 provides a better description. This follows
because the behavior k2 ∝ β−1 is observed [4,5] for a wide
variety of equations of state in the mass range 1.1 M⊙ ≲
M ≲ 1.6 M⊙ (corresponding to, roughly, 0.11≲ β ≲ 0.20).
This mass range is precisely the range expected if observed
double neutron star binaries are typical merger candidates,
and is the range of neutron star masses inferred for
GW170817 [6,7]. Reference [34] found that R1.4 ∝ p1=4

in the density range ns − 2ns. Given that Λ ∝ R6 for a given
mass, andns < n1 < 2ns, it follows thatΛ1.4;max ∝ p5=4−3=2

1;max ,
which we find to approximately be the case.
These results are illustrated in Fig. 4, which shows Λβ6

as a function ofM. We infer the important result that, in our
relevant mass range,

FIG. 3. The dimensionless tidal deformability for individual
stars as a function of mass for various equations of state are
marked by dots, which are color-coded by their radii. Those
configurations lying between the lower solid or colored dashed
lines and the upper-most solid line originate from equations
of state which satisfy the indicated Mmax constraint. p1;min ¼
8.4 MeV fm−3 and p1;max ¼ 30 MeV fm−3 were assumed.

FIG. 2. Left panel: Permitted values of masses and radii for different assumptions about the minimum neutron star maximum mass
Mmax A minimum value of p1 ¼ 8.4 MeV fm−3 was assumed. Right panel: Permitted values of pressure and energy density for different
assumptions about Mmax.

FIG. 4. Bounds of Λβ6 as a function of mass for piecewise
polytropes as constrained by Mmax and p1;min. p1;max ¼
30 MeV fm−3 is assumed. Solid curves are lower bounds for the
indicated Mmax. Upper bounds for p1;min ¼ 3.74ð8.4Þ MeV fm−3

are shown by dashed (dot-dashed) curves. Note that for 1.1 M⊙ <
M < 1.6 M⊙ and Mmax > 2 M⊙ that Λβ6 is constant to about
�12% (dotted lines).
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Λ ¼ aβ−6; ð13Þ

where a ¼ 0.0085� 0.0010 bounds the results as long as
Mmax ≳ 2 M⊙ and p1;min ¼ 8.4 MeV fm−3. Because Λ is
largely proportional to R6, we find that, in contrast to the
situation for Λ, the upper limit of Λβ6 is insensitive to the
value of p1;max, and the lower limit is insensitive to p1;min.
Nevertheless, the upper limit acquires a sensitivity to p1;min

because Λ ∝ R6 is only approximate. It is also noted
that for p1;min ¼ 8.4 MeV fm−3 and Mmax ≳ 2.32 M⊙, or
p1;min ¼ 3.74 MeV fm−3 and Mmax ≳ 2.19 M⊙, the upper
boundary also depends on Mmax.
We find that the upper bounds for both Λ and Λβ6 can be

further reduced if one can impose an upper limit to the
neutron star maximum mass, as perhaps can be inferred for
GW170817 [35,36]. However, these reductions are realized
only for M=Mmax > 0.75, generally outside the interesting
range for observed double neutron star binaries. The
reductions increase as M=Mmax increases. For Mmax ≤
2.2 M⊙ and M ¼ Mmax, Λ can be reduced by a factor of
2 and Λβ6 can be reduced by about 0.001. There is no
change to the lower bound of either quantity.

V. THE BINARY DEFORMABILITY

The β-dependence of Λ has interesting consequences for
the binary deformability Λ̃, Eq. (1). For each equation of state
in the piecewise polytrope scheme, one can compute Λ̃ for all
stellar pairs along the corresponding M − R curve. The
results are displayed in Fig. 5, where equations of state
are identified by their corresponding value ofR1.4, the radius
of a 1.4 M⊙ star. This figure bears a striking resemblance to
Fig. 3, and suggests that Λ̃ ∝ ðM=R1.4Þ−6, at least for values
of M≲ 1.4 M⊙, a result confirmed in Fig. 6.

As is the case for ΛðMÞ, the upper bound of Λ̃ depends
on p1;max and is insensitive to a lower limit for Mmax for
M≳ 1.1 M⊙ (Fig. 6). The upper bound for M≲ 1.6 M⊙
is sensitive to p1;min. Similarly, the lower bound to Λ̃ðMÞ
depends both on p1;min and Mmax.
An inferred upper limit to the maximum mass can result

in a smaller upper bounds to Λ̃ and Λ̃ðGM=R1.4c2Þ6, but
only for 1.55 M⊙ < M < Mmax=21=5 [37]. The maximum
reduction to Λ̃ is a factor 2 when M ¼ Mmax. If Mmax ¼
2.5ð≤2.4ÞM⊙ the maximum reduction to Λ̃ðGM=R1.4c2Þ6
is 0.0002 (0.0005).
It is interesting to note that Eq. (13) allows one to express

the binary deformability as

Λ̃≃
16a
13

�
R1.4c2

GM

�
6 q18=5

ð1þqÞ31=5
�
r61ð1þ 12qÞþ r62

12þq
q2

�
;

ð14Þ

where ri ¼ Ri=R1.4 and i refers to star M1 or M2. For the
piecewise polytropes we consider, and in the mass range
1.1 M⊙ ≤ M ≤ 1.6 M⊙, the radius range is ΔR ¼
jRM¼1.6 M⊙

− RM¼1.1 M⊙
j ≤ 0.47 km for all viable equa-

tions of state. Moreover, the average spread is only
hΔRi ≃ 0.1 km, or less than about 1%. Assuming r1 ≃
r2 ≃ 1 leads to

Λ̃ ≃
16a
13

�
R1.4c2

GM

�
6 q8=5

ð1þ qÞ26=5 ð12 − 11qþ 12q2Þ: ð15Þ

This equation is remarkably insensitive to q. In fact, one
finds

�∂Λ̃
∂q

�
M

≃ Λ̃
ð1 − qÞ

5qð1þ qÞ
�
96 − 263qþ 96q2

12 − 11qþ 12q2

�
; ð16Þ

FIG. 5. Similar to Fig. 3, except that the dimensionless binary
tidal deformability as a function of chirp mass is displayed, with
stellar pairs indicated with dots colored according to the value of
R1.4 for each assumed equation of state. Mmax only affects the
lower bound. p1;min ¼ 8.4 MeV fm−3 is assumed.

FIG. 6. Similar to Fig. 4, except that bounds of the quantity
Λ̃½GM=ðR1.4c2Þ�6 are displayed. Solid (dashed) lines show
bounds for p1. min ¼ 8.4ð3.74Þ MeV fm−3. The chirp mass of
GW170817 is shown by the vertical dotted line.
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showing the derivative vanishes when q ¼ 1 and
q ¼ 0.434. Thus, Λ̃ is very insensitive to q for the relevant
range q ≳ 1=2 which follows from M2;min ≃ 1 M⊙ and
Mmax ∼ 2 M⊙. In the case of GW170817, q≳ 0.7 to
90% confidence [6]. For a given M, and assuming
ri ¼ 1, one finds that Λ̃ðq ¼ 0.7Þ=Λ̃ðq ¼ 1Þ ¼ 1.029.
Even for q ¼ 0.5, the ratio Λ̃ðqÞ=Λ̃ð0Þ ¼ 1.11. (Indeed,
one can show that Λ̃ðq ¼ 0.274Þ ¼ Λ̃ðq ¼ 1Þ.) Although Λ̃
is formally a function of M, R1, R2 and q, the effective
functional dependence of Λ̃ðM=R1.4Þ6 on q is thus very
similar to that of Λβ6 on M, i.e.,

Λ̃ ¼ a0
�
R1.4c2

GM

�
6

; ð17Þ

where a0 ¼ 0.0035� 0.0007 bounds the results for
1.0 M⊙ ≤ M ≤ 1.4 M⊙. However, for GW170817’s value
M ¼ 1.188 M⊙, one finds a0 ¼ 0.0039� 0.0002 with just
a �5% variation (Fig. 6). Roughly, a0 is determined by
setting q ¼ 1 in Eq. (15), or a0 ≃ 2−6=5a. The larger relative
range of a0 compared to a is because binaries with M≳
1.2 M⊙ and small q can contain a massive neutron
star M ≳ 1.6 M⊙.
It is useful to invert Eq. (17) to arrive at an estimate for

R1.4 that is largely insensitive to the EOS:

R1.4 ≃ ð11.5� 0.3Þ M
M⊙

�
Λ̃
800

�
1=6

km: ð18Þ

For GW170817, the accurately known M and its inferred
a0 imply R1.4 ≃ ð13.4� 0.1ÞðΛ̃=800Þ1=6 km.

VI. DEFORMABILITY-MASS CORRELATIONS
FOR HADRONIC STARS

An immediate result motivated by the observations with
piecewise polytropes that Λ ≃ aβ−6 and r1 ≃ r2 is

Λ1 ≃ q6Λ2: ð19Þ

DFLB3 used this correlation in the analysis of the gravi-
tational wave signal from GW170817, allowing a reduction
in the number of fitting parameters by one. Use of this
correlation resulted in a better model of the event: the odds
ratio comparing the results including this correlation to not
including it was ≳100 [7]. However, this correlation is not
perfect, first because there is a bounding range to a and
second, because dR=dM ≠ 0 in the relevant mass range.
We now quantify this uncertainty.
To begin, for piecewise polytropes, we show upper and

lower bounds on Λ2q6=Λ1 in Fig. 7 that would apply for
GW170817 for which M ¼ 1.188 M⊙ is assumed. One
observes a spread around the value of unity predicted by
Eq. (19) which expands as q decreases. The lower bound
is determined by the assumed lower limit to p1, p1;min.

because those M − R curves can have the largest values
of ðc2=GÞdR=dM and hence the smallest ratios of Λ2=Λ1

for a given q. We show bounds for the cases
p1;min ¼ 3.74 MeV fm−3, the conservative lower limit from
the unitary gas constraint, and for 8.4 MeV fm−3 from
neutron matter theoretical calculations. On the other hand,
the upper limit is determined by the M − R curves with the
minimum possible value of p2, which increases with the
assumed minimum value of the maximum mass Mmax ≥
2 M⊙ [27], because those M − R curves can have the
smallest (i.e., most negative) values of ðc2=GÞdR=dM.
Importantly, we found that the upper bound to Λ2=Λ1,
being a ratio, is not sensitive to p1;max despite the fact that
the upper bound to ΛðMÞ is determined by p1;max. We have
determined that these bounds may be approximated as

FIG. 7. Symbols show the upper and lower bounds on
Λ2q6=Λ1 as a function of q for hadronic stars as determined
from piecewise polytropes assuming M ¼ 1.188 M⊙ for
GW170817. The two lower bounds correspond to lower limits
p1;min ¼ 3.74 MeV fm−3 (crosses) and 8.4 MeV fm−3 (asterisks).
The approximate bounds given by Eq. (20) are shown as
black curves.

TABLE I. Hadronic Λ1=Λ2 exponents in Eq. (20).

p1;min 3.74 8.4 MeV fm−3

MðM⊙Þ n− n− n0þ n1þ
1.00 5.1717 5.3242 6.4658 −0.24890
1.05 5.2720 5.4167 6.7470 −0.32672
1.10 5.3786 5.5169 7.0984 −0.44315
1.15 5.4924 5.6252 7.5546 −0.62431
1.188 5.5839 5.7133 8.0322 −0.86884
1.20 5.6138 5.7423 8.1702 −0.91294
1.25 5.7449 5.8693 8.9715 −1.3177
1.30 5.8960 6.0070 9.9713 −1.8091
1.35 6.0785 6.1574 11.234 −2.3970
1.40 6.3047 6.3223 12.833 −3.0232
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qn− ≥ Λ1=Λ2 ≥ qn0þþqn1þ ; ð20Þ

valid for q≳ 0.65, where values for the exponent n−, for the
cases that p1;min ¼ ½3.74; 8.4� MeV fm−3, and the expo-
nents n0þ and n1þ are given in Table I.
In future BNS merger events, the chirp masses will likely

always be measured to better than 0.01 M⊙ precision.
It is therefore useful to generalize results to different chirp
masses by modifying the exponents. We show results for
M in the range 1.0 M⊙ ≤ M ≤ 1.4 M⊙ likely to span
future mergers in Fig. 8 and summarize the exponents in
Table I. Bounds for intermediate values can be interpolated.
As before, the lower limits to Λ2q6=Λ1 are determined
by p1;min, so the cases p1;min ¼ 3.74 MeV fm−3 and
8.4 MeV fm−3 are shown separately in Table I. However,

they are so similar they cannot be distinguished on the scale
of Fig. 8. The upper limit is determined by Mmax, which is
chosen to be ≥2 M⊙; as before, it is not sensitive to the
value of p1;max.
We found that imposing an upper limit toMmax does not

affect the upper bounds but may slightly increase the lower
bounds if Mmax < 2.2 M⊙ and p1;min ¼ 3.74 MeV fm−3.
Another approach was considered by LVC2, who

adopted the methodology of Ref. [15], who fitted 11
realistic equations of state to determine the optimum value
of Λ2 as a function of Λ1,M1 andM2. They expressed their
results in terms of the symmetric and antisymmetric
combinations of Λ1 and Λ2: Λs ¼ ðΛ1 þ Λ2Þ=2 and
Λa ¼ ðΛ2 − Λ1Þ=2. Specifically, they determined an
analytical expression for the optimum fit of ΛaðΛs; qÞ
which is valid for physically reasonable values of M.
Reference [24] furthermore determined the associated
standard deviations σΛa

for this fit. For their waveform
modeling, the LVC2 strategy is to sample prior distribu-
tions of Λs and q values and to then compute associated
ranges of Λa values, assumed to have a Gaussian distri-
bution with the aforementioned standard deviations asso-
ciated with specific choices ofΛs and q.M does not appear
as a specific parameter. However, this procedure has two
disadvantages: it does not allow sampling of the entire
physically allowed Λa − Λs space, and, in the case of small
values of Λs and q, values of Λa > Λs can be selected,
leading to negative values of Λ1 and an essentially
unlimited range of Λ2 values.
We compare the 1σ predicted width for Λ2q6=Λ1 of this

procedure with ours for M ¼ 1.188 M⊙ appropriate for
modeling GW170817 in Fig. 9. We note that at every q, this
procedure leads to a much larger uncertainty range than
the bounds we have established, even without including the
1σ uncertainty estimated by Ref. [24]. As mentioned,

FIG. 8. The same as Fig. 7 but for general chirp mass ranges
(color) for hadronic stars. For clarity, lower bounds using
p1;min ¼ 3.74 MeV fm−3 are not shown.

FIG. 9. The same as Fig. 7 but showing the deformability-mass correlation predicted by Refs. [15,24] over all chirp masses. The upper
and lower bounds from Eq. (20) for the GW170817 chirp mass of 1.188 M⊙ are indicated as dashed lines. The left panel shows the mean
value of the quantity Λ2q6=Λ1 as a function of q and Λs ¼ Λ1 þ Λ2 (indicated by color). The right panel show mean values as asterisks
and their estimated �1σ uncertainty ranges.
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assuming a normal distribution with these uncertainties can
lead to the unphysical result that Λ2 < Λ1 which has to be
excluded. One reason for the broader uncertainties with this
procedure is that it is not chirp mass-specific; our results
also predict a larger uncertainty range for larger chirp
masses than for the case of GW170817. This comparison
shows the importance of utilizing information concerning
M, which will be very well determined in a BNSmerger, in
modeling deformability-mass correlations.

VII. MINIMUM DEFORMABILITIES
FROM CAUSALITY

It is of interest to determine the correlations among the
deformabilities and masses involved in the merger of self-
bound stars. These objects have large finite surface density
εo where the pressure vanishes. The idealized case is a
model containing two parameters, εo and a constant sound
speed c2s=c2 ≡ s for ε ≥ εo. Therefore, the equation of state
is simply

p ¼ sðε − εoÞ; ε ≥ εo ð21Þ

and p ¼ 0 otherwise. Koranda, Stergioulas and Friedman
[16] have conjectured that the most compact stellar
configurations, for a given mass M, are achieved for the
case with s ¼ 1. Although not proven, it has been empiri-
cally demonstrated that no causal equation of state can
produce more compact configurations (see, e.g., Ref. [38]).
This is known as the “maximally compact” case. Although
there is abundant evidence that observed neutron stars have
extensive crusts, largely stemming from observations of
pulsar glitches [39,40] and neutron star cooling following
transient accretion events [41,42] and also on longer
timescales [43,44], there is no proof that self-bound stars
do not, in fact, exist.
A famous example is the conjecture [45–47] that strange

quark matter is the ultimate ground state at zero pressure. If
true, the compression of neutron star cores to sufficiently
high density could trigger a phase transition in which most
of the hadronic matter is converted to strange quark matter
which would be more stable. Although the detailed
equation of state of self-bound strange quark matter is
unknown, the essential aspects of their structure can be
determined by In the case of the MIT bag model of strange
quark matter, the bag constant B is equivalent to εo=4 and
s ¼ 1=3. The equation of state is ε ¼ 4Bþ p=s, and in
order that the strange quark matter have a lower energy per
baryon than iron at zero pressure, E0 < 930.4 MeV, and
therefore be more stable than baryonic matter, one
requires B < 37.22 MeV fm−3.
For a given value of s, Eq. (21) has but a single

parameter, εo and so the TOV equations scale with respect
to this parameter. ε, m and r can be replaced by dimension-
less variables, i.e.,

w¼ ε=εo; x¼ r
ffiffiffiffiffiffiffiffi
Gεo

p
=c2; y¼m

ffiffiffiffiffiffiffiffiffiffi
G3εo

q
=c4: ð22Þ

The resulting dimensionless TOV equation can be solved
for a family of solutions determined by the central density,
or w0 ¼ wðx ¼ 0Þ > 1, each having surface values of
radius xsðw0Þ and mass ysðw0Þ that vary with w0; the
surface is where the pressure vanishes, or wðxsÞ ¼ 1. Stable
solutions exist for 1 < w0 < wmax, where wmax is the
dimensionless central density of the maximum mass
configuration, i.e., ysðw0Þ ≤ ysðwmaxÞ.
The solution for which w0 ¼ wmax in the case s ¼ 1 is

termed the maximally compact solution, for which
wmax ¼ 3.029, xs;max ¼ xðwmaxÞ ¼ 0.2405 and ys;max ¼
yðwmaxÞ ¼ 0.08513 [33]. The resulting M − R relation,
parametrically expressed as yðw0Þ − xðw0Þ for 1 < w0 <
wmax, has the smallest radius for a given mass for any causal
equation of state in general relativity. The largest value of
β¼GM=ðRc2Þ¼ys=xs is βmax¼ys;max=xs;max¼0.3542¼
1=2.824, but less compact configurations are also excluded
for masses smaller than the maximum mass. By employing
the mass of the most massive accurately measured pulsar,
Mmax ¼ 2.01� 0.04 M⊙ [48], one can then determine
the most compact M − R boundary from the parametric
equations

M ¼ Mmax
ysðw0Þ
ys;max

;

R ¼ Rmax
xsðw0Þ
xs;max

¼ GMmax

c2
xsðw0Þ
ys;max

: ð23Þ

Rmax is the radius of the maximum mass solution. AsMmax
is increased, the minimum causal radius is increased for
everyM < Mmax. Figure 10 shows the maximally-compact
solution in the dimensionless variables M=Mmax ¼
ysðw0Þ=ysðwmaxÞ and R=Rmax ¼ xsðw0Þ=xsðwmaxÞ. Since

FIG. 10. The mass-radius curves for self-bound configurations
parametrized by the sound speed squared, s. Quantities are
normalized relative to their values for the maximummass solution.
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Mmax is currently ≃2 M⊙, this figure is easy to interpret in
terms of solar masses and km (for s ¼ 1, Mmax ¼ 2 M⊙
corresponds to Rmax ¼ 8.34 km). Similar mass-radius
curves and maximum compactnesses βmax for other values
of s are displayed in Fig. 10 and Table II, respectively.
One may now solve Eq. (7) determining the tidal

deformability. The variable z is already dimensionless
and does not need to be rescaled, but since a density
discontinuity exists at the surface, the correction described
in Sec. III must be applied. Figure 11 shows the dimen-
sionless deformability Λ as a function of M=Mmax for the
maximally compact solution s ¼ 1. For the specific case
that M ¼ 1.4 M⊙ and Mmax ¼ 2 M⊙, one can see that
Λð1.4 M⊙Þ ≃ 59. By conjecture, this currently is the causal
minimum value of the deformability for a 1.4 M⊙ star, but
its value will increase by a factor ≃ðMmax=2.0 M⊙Þ5.5 if
Mmax is increased. Similar deformability-mass curves
may be computed for other values of s (Fig. 11). For
0.3≲M=Mmax ≲ 0.95, these results may be approximated
with cubic polynomials whose coefficients are given in
Table II:

lnΛ ¼
X3
i¼0

ai

�
M

Mmax

�
i

ð24Þ

Because we can give ΛðMÞ explicitly for self-bound
stars, computing Λ1=Λ2 as a function of q andM is trivial.
It is also straightforward to determine the binary deform-
ability Λ̃ of self-bound stars. The results again scale with
the assumed value of Mmax and are shown in Fig. 12 for
s ¼ 1. By conjecture, these are the minimum causally
allowed binary deformabilities for any binary. The lower
boundary can be fit with

Λ̃min ≃ −244.86z−6 þ 2058z−5 − 6723.2z−4

þ 10760z−3 − 8428.3z−2 þ 2582.5z−1; ð25Þ

where z ¼ M=Mmax, for 0.45 < z < 0.8. This is therefore
the causal minimum for Λ̃ðM=MmaxÞ. For the case of
GW170817, M ¼ 1.188 M⊙, so if Mmax ≥ 2 M⊙, one
sees that Λ̃min ≥ 51. Note that using Eq. (18) one then
obtains R1.4 ≥ 8.43 km whereas the exact causal minimum
with Mmax ¼ 2 M⊙ is 8.34 km, demonstrating the validity
of this equation even beyond the ranges expected for
hadronic stars.

VIII. MINIMUM DEFORMABILITIES FROM
THE UNITARY GAS AND NEUTRON

MATTER CONSTRAINTS

Tews et al. [18] argue that a robust lower limit to the
energy of neutron matter, and therefore effectively that of
neutron star matter above the nuclei-gas phase transition
around ns=2, is the energy of an idealized unitary gas,
which is

TABLE II. Maximally-compact EOS maximum mass solutions
and fitting coefficients for Eq. (24).

s 1 5=6 2=3 1=2 1=3 1=5

wmax 3.029 3.2404 3.544 4.008 4.816 6.095
xs;max 0.2405 0.2331 0.2235 0.2104 0.1909 0.1652
ys;max 0.08513 0.07992 0.07328 0.06439 0.05169 0.03648
βmax 0.3542 0.3429 0.3279 0.3060 0.2708 0.2209

a0 13.42 13.61 13.91 14.31 15.04 16.15
a1 −23.04 −22.82 −22.71 −22.39 −22.11 −21.54
a2 20.56 20.32 20.27 19.92 19.71 19.10
a3 −9.615 −9.461 −9.398 −9.174 −9.005 −8.639

FIG. 11. The dimensionless deformability as a function of
M=Mmax ¼ yðw0Þ=ys;max for self-bound stars parametrized by a
constant sound speed c2s=c2 ¼ s. Dotted curves show cubic
polynomial fits using Eq. (24).

FIG. 12. The binary deformability as a function ofM=Mmax for
the maximally compact self-bound stars with s ¼ 1. Binary pairs
are shown by points color coded according to their mass ratio q.
The solid curve is a quintic polynomial approximation for the
lower boundary using Eq. (25).
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EUG ¼ ξ0EFG ¼ 3ξ0
5

ℏ2

2m
ð3π2nsuÞ2=3; ð26Þ

where EFG is the energy of a noninteracting Fermi gas,
u ¼ n=ns, and ξ0 ≃ 0.37 is the experimentally measured
Bertsch constant. If true, this automatically sets a lower
limit to the neutron pressure pN :

pN ≥ nsu2
∂EUG

∂u ¼ ξ0ns
ℏ2

5m
ð3π2nsÞ2=3u5=3: ð27Þ

Assuming that the neutron star matter pressure is approx-
imately equal to the neutron pressure, at the density n1 ¼
1.85ns we find p1 ≥ 3.74 MeV fm−3. On the other hand,
theoretical calculations of the properties of neutron matter
[31] give appreciably larger values at this density, p1 ≳
8.4 MeV fm−3 as we utilized in Sec. VI.
In the unitary gas limiting case where p1;min ¼

3.74 MeV fm−3, the energy Eq. (26) cannot be used to
arbitrarily large densities because the 2 M⊙ maximum
mass constraint would be impossible to satisfy. However,
for hadronic stars, one could use this energy up to the
density n1 and then, subject to causality, arbitrarily increase
the energy at higher densities to ensure compliance with
Mmax. This situation can be approximated by setting
p1;min ¼ 3.74 MeV fm−3 and employing the piecewise
polytrope scheme as before. The lower bound to radii will
once again be determined by the assumed value of Mmax,
but will be smaller than shown in Fig. 2. As previously
mentioned, if Mmax ¼ 1.90 M⊙, R1.4 can be as small as
10.5 km. Similarly, the lower bound to ΛðMÞ will also
decrease with p1;min for each value of Mmax. While
Λminð1.4 M⊙Þ ≃ 197 in the realistic neutron matter limiting
case that p1;min ¼ 8.4 MeV fm−3 and Mmax ¼ 2 M⊙
(Fig. 3), for p1;min ¼ 3.74 MeV fm−3 (the unitary gas
limiting case) and the same Mmax it is about 156. We have
fit the lower bounds ΛminðMÞ for both values of p1;min, for
various values of Mmax, using

lnΛmin ¼
X3
i¼0

biðM=M⊙Þi; ð28Þ

where the coefficients bi are provided in Table III. These
fits are valid for 1 M⊙ < M < 0.95Mmax.

IX. DEFORMABILITY-MASS CORRELATIONS
OF HYBRID STARS

We so far have largely ignored the possibility of strong
first-order phase transitions in neutron stars. An important
issue is how much the correlation between the deform-
abilities is broadened by the possible appearance of a
different phase of matter, such as deconfined quark matter,
in the relevant density range between the central densities
nc;½1;2� of the two stars. This could substantially reduce the
value of R1 and thereby break the condition R1 ≃ R2 even
for stars of almost the same mass. Configurations with such
a phase transition are often called hybrid stars (as opposed
to purely hadronic stars), and it is of interest to determine if
gravitational-wave signals could provide support for or
against their existence. Should the more massive star be a
hybrid star, and the lower mass star be a hadonic star, the
bounds on Λ1=Λ2 will be much larger than if both are
hadronic or hybrid stars. In this paper, we establish analytic
absolute bounds for values of Λ1=Λ2 for hybrid stars
subject to similar constraints as assumed for purely
hadronic stars. The piecewise polytrope methodology
adopted does allow a first order phase transition at the
pressure p2 ¼ p3 spanning the interval n2 ≤ n ≤ n3; how-
ever, this is a serious restriction to what might be possible.
We here consider a more general method of introducing
phase transitions that does not require these restrictions. We
will demonstrate that useful bounds on this correlation can
still be analytically expressed as functions of q and M.
To construct families of hybrid stars, we follow the

methodology of Ref. [49] who model phase transitions with
three parameters: the pressure pt where they occur, the
fractional energy density change across the transition
Δεt=εt, and the sound speed of matter s ¼ c2s=c2 for the
new phase, which is assumed to be constant, for p > pt.
[49] shows that the phase space allowed for strong phase
transitions increases with s, and for s ≤ 1=3 there is almost
no phase space allowed for hybrid configurations once the
Mmax ¼ 2 M⊙ constraint is considered. As a result, to

TABLE III. Coefficients for Λmin fits from Eq. (28) for hadronic stars for both the unitary gas limit and the realistic
neutron matter cases.

p1;min Mmax 2.0 2.1 2.2 2.3 2.4

3.74 MeV fm−3 b0 17.329 17.345 16.176 15.047 14.572
b1 −17.947 −17.354 −14.497 −11.902 −10.776
b2 9.8648 9.0022 6.7804 4.8887 4.0766
b3 −2.3640 −2.0178 −1.4319 −0.96710 −0.76617

8.4 MeV fm−3 b0 18.819 17.700 16.572 15.534 15.131
b1 −19.862 −17.191 −14.358 −12.011 −11.708
b2 10.881 8.6973 6.5452 4.8485 4.1825
b3 −2.5713 −1.9458 −1.3822 −0.96191 −0.79197
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consider the maximum bounds for Λ2=Λ1 we focus on the
extreme, and possibly unrealistic, case s ¼ 1. We employ
the three-segment piecewise polytropic equation of state for
hadronic matter with p ≤ pt, but we allow for phase
transitions with pt ≥ ps andΔεt=εt > 0 limited from above
by the maximum mass constraint.
We first examine the bounds for the case applicable

to GW170817, namely M ¼ 1.188 M⊙. Figure 13 dis-
plays the upper and lower bounds for Λ2q6=Λ1, assuming
Mmax ≥ 2.0 M⊙ and 3.74 MeV fm−3≤p1≤30MeVfm−3.
The lower bound depends weakly on p1;min (Table IV),
and can be approximately described as qn− as in the
hadronic case (the alternate lower bound from p1;min ¼
3.74 MeV fm−3 cannot be distinguished in this figure). We
found that imposing an upper limit to Mmax below about
2.4 M⊙ can increase the lower bound, but we do not

consider that further here. In contrast to the purely hadronic
case, the upper bound depends strongly on p1;max, because
R2 depends strongly on this but R1 (now a hybrid star) does
not. The upper bound weakly depends on the minimum
value of Mmax. Even for q ≃ 1, one finds if a strong
phase transition occurs at the central density of a star with
mass M2 ≃M1, one has R1 < R2 and Λ1 < Λ2 since
Λ ∝ ðR=MÞ6. For hybrid stars, the upper boundary can
be approximated with a cubic polynomial q-dependence:

qn− ≥ Λ1=Λ2 ≥
X3
i¼0

niþqi; ð29Þ

where parameter values are given in Table IV.
Results for general chirp masses are displayed in Fig. 14;

in all cases, as for hadronic stars, the two lower bounds for
different values of p1;min cannot be distinguished on the
scale of the figure. The lower bounds are also insensitive to
M because the corresponding configurations are close to
the maximally compact ones. Upper bounds depend, as for
the hadronic stars, on p1;max, which is chosen to be
30 MeV fm−3 for this figure. Coefficients n− for the lower
bound and niþ for the upper bound, using Eq. (29), are
listed in Table IV.
Imposing an upper limit to Mmax does not change the

upper bounds to Λ2=Λ1 in the hybrid case, but if
Mmax ≲ 2.6 M⊙, the lower bounds are increased at q ¼
0.7 by up to 10% (50%) for M ¼ 1ð1.4Þ M⊙, the effect
increasing with decreasing Mmax.
Minimum values for RðMÞ and ΛðMÞ in the case of

hybrid stars will be achieved when a phase transition occurs
at the smallest possible density that still satisfies the
assumed value of Mmax. We assume that the transition
density is no smaller than ns, for which the transition
pressure pt ¼ ps will depend on p1;min through pt ¼
p0ðns=n0Þγ1 where γ1 ¼ lnðp1;min=p0Þ=lnðn1=n0Þ takes

FIG. 13. Symbols show the upper and lower bounds onΛ2q6=Λ1

as a function of q for hybrid stars as determined from piecewise
polytropes assumingM ¼ 1.188 M⊙, appropriate to GW170817.
The lower bound corresponds to p1;min ¼ 8.4 MeV fm−3. The
upper bound corresponds to Mmax ≥ 2 M⊙ and p1;max ¼
30 MeV fm−3. The approximate bounds given by Eq. (29) are
shown as black curves.

TABLE IV. Hybrid star Λ1=Λ2 parameters in Eq. (29).

p1;min 3.74 8.4 MeV fm−3

MðM⊙Þ n− n− n0þ n1þ n2þ n3þ
1.00 4.1555 4.1788 −0.74665 3.3267 −4.4057 1.9998
1.05 4.1932 4.2162 −0.95564 4.0789 −5.3424 2.4010
1.10 4.2307 4.2524 −1.1902 4.9075 −6.3577 2.8293
1.15 4.2707 4.2889 −1.3230 5.3650 −6.9267 3.0792
1.188 4.2995 4.3187 −1.4475 5.7829 −7.4254 3.2872
1.20 4.3112 4.3281 −1.4160 5.6484 −7.2500 3.2147
1.25 4.3502 4.3673 −1.6317 6.3747 −8.1036 3.5580
1.30 4.3932 4.4089 −1.8586 7.1188 −8.0499 3.8838
1.35 4.4362 4.4517 −1.9485 7.3619 −9.1952 3.9703
1.40 4.4808 4.4954 −2.1439 7.9539 −9.8241 4.1954

FIG. 14. The same as Fig. 13 but for general chirp mass ranges
(color) for binaries with one hybrid star. For clarity, lower bounds
using p1;min ¼ 3.74 MeV fm−3 are not shown.
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the values 1.77 and 2.27 for the cases p1;min ¼
3.74 MeV fm−3 and 8.4 MeV fm−3, respectively. We find
pt ¼ ps ¼ 1.18 MeV fm−3 and 1.90 MeV fm−3, respec-
tively. These pressures are so small compared to the central
pressures that the effective values of ΛminðMÞ for hybrid
stars are the same asΛðMÞ for the maximally compact EOS
for the case s ¼ 1.

X. DISCUSSION AND CONCLUSIONS

In this paper, we have established upper and lower
bounds for Λ2=Λ1 as functions of q and M, and minimum
values of ΛðMÞ, that can be used to restrict the priors of
deformabilities in analyses of gravitational-wave data from
neutron star mergers. DFLB3 has shown that taking these
correlations and bounds into account significantly
improves fits in the case of GW170817. Imposing corre-
lations reduced the uncertainty range for Λ̃, lowering the
90% credible upper limit by approximately 20%.
The bounds we established for hadronic stars were based

on a piecewise polytropic scheme with three segments and
fixed boundary densities. We find our results with three
segments to be relatively insensitive to reasonable varia-
tions of the boundary densities (Fig. 15) n1 and n2. Varying
the boundary densities produce variations of order �5% in
the upper boundary and �10% in the lower boundary
although, for a 1.4 M⊙ star, the maximum value of Λ is
about 6 times the lowest value for Mmax ¼ 2 M⊙.
However, the variations produced by altering the number

of polytropic segments can be more extreme. Adding
polytropic segments allows for the possibility of one or
more strong first-order phase transitions and so the upper
and lower bounds to ΛðMÞ can approach the results for the
hybrid configurations in these cases. However, restricted to
parameter ranges that approximate purely hadronic equa-
tions of state, varying the number of polytropic segments
produce changes to ΛðMÞ bounds similar to the changes
induced by altering the boundary densities in the three-
polytrope scheme shown in Fig. 15.
Modifying the piecewise polytrope scheme to smooth its

behavior near the segment boundaries, as in the spectral
decomposition method [28], also has been shown to
increase the accuracy in reproducing specific equations
of state. Other high-density approximation methods have
also been suggested, e.g., Ref. [29]. However, such

schemes inevitably reduce the allowed ranges of sampled
pressure-density relations and therefore result in artificially
smaller bounding ranges. It is important to emphasize that
determining ΛðMÞ bounds is dissociated from the question
of a parametrized scheme’s accuracy in reproducing ΛðMÞ
from a specific equation of state. Nevertheless, if one
attempts to directly deduce the EOS itself from gravita-
tional waveform modeling, as LVC2 has attempted, the
accuracy of the high-density approximation scheme
becomes an important consideration.

ACKNOWLEDGMENTS

This work was stimulated by The Kavli Institute
for Theoretical Physics (KITP) Rapid Response
Workshop: Astrophysics from a Neutron Star Merger,
and by The Institute for Nuclear Theory (INT) Program
INT-18-72R: First Multi-Messenger Observations of a
Neutron Star Merger and its Implications for Nuclear
Physics. J. M. L. thanks the hospitality of the KITP and
the INT. We acknowledge fruitful discussions with F.
Douglas Swesty, Soumi De, Duncan Brown, B.
Sathyaprakash, Samaya Nissanke, Tanja Hinderer and
Sophia Han. This work was supported in part by U.S.
DOE Grant No. DE-AC02-87ER40317 and NASA Grant
No. 80NSSC17K0554.

[1] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502
(2008).

[2] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[3] T. Damour and A. Nagar, Phys. Rev. D 80, 084035

(2009).

[4] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D 81, 123016 (2010).

[5] S. Postnikov, M. Prakash, and J. M. Lattimer, Phys. Rev. D
82, 024016 (2010).

[6] B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).

FIG. 15. The variation of the upper and lower bounds to ΛðMÞ
for hadronic stars as the boundary densities n1 and n2 are
changed. Mmax ¼ 2.0 M⊙ is assumed.

TIANQI ZHAO and JAMES M. LATTIMER PHYS. REV. D 98, 063020 (2018)

063020-14

https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1103/PhysRevLett.119.161101


[7] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018).

[8] B. P. Abbott et al., arXiv:1805.11581.
[9] B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44,

3819 (1991).
[10] B. Mikoczi, M. Vasuth, and L. A. Gergely, Phys. Rev. D 71,

124043 (2005).
[11] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys.

Rev. D 79, 104023 (2009).
[12] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S.

Sathyaprakash, Phys. Rev. D 80, 084043 (2009).
[13] J. Vines, E. E. Flanagan, and T. Hinderer, Phys. Rev. D 83,

084051 (2011).
[14] A. Bohe, S. Marsat, and L. Blanchet, Classical Quantum

Gravity 30, 135009 (2013).
[15] K. Yagi and N. Yunes, Classical Quantum Gravity 34,

015006 (2017).
[16] S. Koranda, N. Stergioulas, and J. L. Friedman, Astrophys.

J. 488, 799 (1997).
[17] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012).
[18] I. Tews, J. M. Lattimer, A. Ohnishi, and E. E. Kolomeitsev,

Astrophys. J. 848, 105 (2017).
[19] T. M. Tauris et al., Astrophys. J. 846, 170 (2017).
[20] R. D. Ferdman et al., Astrophys. J. 767, 85 (2013).
[21] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Eur. Phys.

J. A 52, 18 (2016).
[22] J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J.

722, 1030 (2010).
[23] R. S. Lynch, P. C. C. Freire, S. M. Ransom, and B. A.

Jacoby, Astrophys. J. 745, 109 (2012).
[24] K. Chatziioannou, C.-J. Haster, and A. Zimmerman, Phys.

Rev. D 97, 104036 (2018).
[25] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,

Phys. Rev. D 79, 124032 (2009).
[26] F. Özel and D. Psaltis, Phys. Rev. D 80, 103003 (2009).
[27] J. M. Lattimer and M. Prakash, Phys. Rep. 621, 127 (2016).
[28] L. Lindblom, Phys. Rev. D 97, 123019 (2018).

[29] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A.
Vuorinen, Astrophys. J. 789, 127 (2014).

[30] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R.
Schaeffer, Nucl. Phys. A635, 231 (1998).

[31] C. Drischler, A. Carbone, K. Hebeler, and A. Schwenk,
Phys. Rev. C 94, 054307 (2016).

[32] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
[33] J. M. Lattimer and M. Prakash, in From Nuclei to Stars,

edited by S. Lee (World Scientific, Singapore, 2011), p. 275.
[34] J.M. Lattimer andM. Prakash, Astrophys. J. 550, 426 (2001).
[35] B. Margalit and B. D. Metzger, Astrophys. J. Lett. 850, L19

(2017).
[36] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K.

Kyutoku, Y. Sekiguchi, and M. Tanaka, Phys. Rev. D 96,
123012 (2017).

[37] Note that the maximum chirp mass occurs when q ¼ 1 and
M ¼ Mmax=21=5.

[38] N. K. Glendenning, Phys. Rev. Lett. 85, 1150 (2000).
[39] B. Link, R. I. Epstein, and J. M. Lattimer, Phys. Rev. Lett.

83, 3362 (1999).
[40] M. S. Mongiovi, F. G. Russo, and M. Sciacca, Mon. Not. R.

Astron. Soc. 469, 2141 (2017).
[41] E. A. Chaikin, A. D. Kaminker, and D. G. Yakovlev, As-

trophys. Space Sci. 363, 209 (2018).
[42] L. S. Ootes, R. Wijnands, D. Page, and N. Degenaar, Mon.

Not. R. Astron. Soc. 477, 2900 (2018).
[43] D. Page, J. M. Lattimer, M. Prakash, and A.W. Steiner,

Astrophys. J. Suppl. Ser. 155, 623 (2004).
[44] M. V. Beznogov, M. Fortin, P. Haensel, D. G. Yakovlev, and

J. L. Zdunik, Mon. Not. R. Astron. Soc. 463, 1307 (2016).
[45] D. D. Ivanenko and D. F. Kurdelaidze, Astrophysics 1, 251

(1965).
[46] E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).
[47] E. Witten, Phys. Rev. D 30, 272 (1984).
[48] J. Antoniadis et al., Science 340, 1233232 (2013).
[49] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D 88,

083013 (2013).

TIDAL DEFORMABILITIES AND NEUTRON STAR MERGERS PHYS. REV. D 98, 063020 (2018)

063020-15

https://doi.org/10.1103/PhysRevLett.121.091102
http://arXiv.org/abs/1805.11581
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.71.124043
https://doi.org/10.1103/PhysRevD.71.124043
https://doi.org/10.1103/PhysRevD.79.104023
https://doi.org/10.1103/PhysRevD.79.104023
https://doi.org/10.1103/PhysRevD.80.084043
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1088/0264-9381/30/13/135009
https://doi.org/10.1088/0264-9381/30/13/135009
https://doi.org/10.1088/1361-6382/34/1/015006
https://doi.org/10.1088/1361-6382/34/1/015006
https://doi.org/10.1086/304714
https://doi.org/10.1086/304714
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.3847/1538-4357/aa8db9
https://doi.org/10.3847/1538-4357/aa7e89
https://doi.org/10.1088/0004-637X/767/1/85
https://doi.org/10.1140/epja/i2016-16018-1
https://doi.org/10.1140/epja/i2016-16018-1
https://doi.org/10.1088/0004-637X/722/2/1030
https://doi.org/10.1088/0004-637X/722/2/1030
https://doi.org/10.1088/0004-637X/745/2/109
https://doi.org/10.1103/PhysRevD.97.104036
https://doi.org/10.1103/PhysRevD.97.104036
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevD.80.103003
https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1103/PhysRevD.97.123019
https://doi.org/10.1088/0004-637X/789/2/127
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1103/PhysRevC.94.054307
https://doi.org/10.1088/0004-637X/771/1/51
https://doi.org/10.1086/319702
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevLett.85.1150
https://doi.org/10.1103/PhysRevLett.83.3362
https://doi.org/10.1103/PhysRevLett.83.3362
https://doi.org/10.1093/mnras/stx827
https://doi.org/10.1093/mnras/stx827
https://doi.org/10.1007/s10509-018-3393-z
https://doi.org/10.1007/s10509-018-3393-z
https://doi.org/10.1093/mnras/sty825
https://doi.org/10.1093/mnras/sty825
https://doi.org/10.1086/424844
https://doi.org/10.1093/mnras/stw2075
https://doi.org/10.1007/BF01042830
https://doi.org/10.1007/BF01042830
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1126/science.1233232
https://doi.org/10.1103/PhysRevD.88.083013
https://doi.org/10.1103/PhysRevD.88.083013

