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Quark matter may appear due to a hadronic-quark transition in the core of a hybrid star. Quarkyonic
matter is an approach in which both quarks and nucleons appear as quasiparticles in a crossover transition,
and provides an explicit realization of early ideas concerning quark matter (e.g., the MIT bag model). This
description has recently been employed by McLerran and Reddy to model chargeless (pure neutron) matter
with an approach that has the virtue that the speed of sound rises quickly at a neutron-quark transition so as
to satisfy observational constraints on the neutron star maximummass (≳2 M⊙) and the radius of a 1.4 M⊙
star (R1.4 ≲ 13.5 km). Traditional models involving first-order transitions result in softer pressure-energy
density relations that have difficulty satisfying these constraints except with very narrow choices of
parameters. We propose a variation of quarkyonic matter involving protons and leptons whose energy can
be explicitly minimized to achieve both chemical and beta equilibrium, which cannot be done in the
chargeless formulation. Quarkyonic stellar models are able to satisfy observed mass and radius constraints
with a wide range of model parameters, avoiding the obligatory fine-tuning of conventional hybrid star
models, including requiring the transition density to be very close to the nuclear saturation density. Our
formulation fits experimental and theoretical properties of the nuclear symmetry energy and pure neutron
matter, and contains as few as three free parameters. This makes it an ideal tool for the study of high-density
matter that is an efficient alternative to piecewise polytrope or spectral decomposition methods.

DOI: 10.1103/PhysRevD.102.023021

I. INTRODUCTION

The measurement of neutron stars masses (see [1,2] for
general reviews) greater than or equal to 2 M⊙ has proven to
be a powerful constraint on the dense matter equation of
state. Equally important have been advances in gravitational
wave measurements of the binary neutron star merger
GW170817 [3–6] and NICER x-ray observations of PSR
J0030þ 0451 [7,8] that, combined, imply that 1.4 M⊙ stars
have radii R1.4 ≲ 13.5 km [9]. The latter result is supported
by nuclear symmetry energy measurements [10–17] and
theoretical chiral Lagrangian calculations of pure neutron
matter [18]. These constraints, coupled with causality
considerations, strongly imply that the equation of state
(EOS) of dense matter quickly changes from softness in the
density range 1–2ns, where ns ≃ 0.16 fm−3 is the nuclear
saturation density, to relative stiffness at higher densities,
with sound speeds approaching the speed of light. At yet
higher densities, in the vicinity of the maximum densities
found in neutron stars (5–10ns) and beyond, matter is
expected to consist of deconfined quark matter with sound
speeds approaching the relativistic value

ffiffiffiffiffiffiffiffi
1=3

p
c. Many

frequently-used parametrizations of the dense-matter EOS,
including power series expansions in nucleon wave number

k or baryon density n [19], piecewise polytropes [20],
constant-sound speed segments [21,22], spectral decom-
position [23], and relativistic mean-field theoretical
approaches [24], fail to capture these trends. In addition,
the transition between hadronic matter and quark matter, if
first-order, introduces significant softening [22,25,26] in the
EOS precisely in the region where it must become stiff to
satisfy the observational and experimental constraints,
suggesting a crossover transition [27–29] instead.
Recently, to satisfy these assorted criteria, speed

of sound parametrizations [30,31] have been introduced
to introduce a large increase in the speed of sound
at intermediate densities followed by a decrease so that
the expected asymptotic

ffiffiffiffiffiffiffiffi
1=3

p
behavior ensues. These

approaches explicitly modeled the sound speed with
arbitrary Gaussian-like functions. However, an alternative
physically intuitive theoretical approach, the quarkyonic
model, has been proposed [32]. In the quarkyonic model, at
low densities, quarks are confined within nucleons inter-
acting via a conventional potential. However, when the
nucleon momenta surpass critical values at the transition
density nt between nuclear and quarkyonic matter, the low
momenta degrees of freedom inside the Fermi sea are
treated as noninteracting quarks, and at higher momenta
they are treated with confining forces resulting in baryons.
In this model, nucleons are viewed as triplets of quarks near
the Fermi surface, while the free quarks resemble the
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massive quarks having a dressed gluon cloud of the
constituent quark model.
The appearance of free quarks above the quarkyonic

transition gives nucleons extra kinetic energy by pushing
them to higher average momenta while decreasing their
densities. In a sense, the quarks “drip out” of the nucleons
and fill the lowest momentum states, resulting in a rapid
increase in pressure. These considerations culminate in a
dramatic increase in sound speed, in contrast to the conven-
tional introduction of quark matter through a first-order
phase transition (e.g., the MIT [33] and Nambu-Jones-
Lasinio bag model approaches [34]). The sound speed
increase is, in fact, large enough to now allow the use of
nucleon-nucleon potentials that could not otherwise satisfy
the observational constraint that Mmax ≳ 2 M⊙ [35,36].
Fine-tuning of the quarkyonic or hadronicmodel parameters
is not necessary in order to obtain viable models.
The model proposed by McLerran and Reddy [32] is

somewhat schematic, involving a single nucleon species
and a chargeless 2-flavor (d and u) system of quarks
without the consideration of chemical or beta equilibrium,
which are the requirements that at every density, the energy
is minimized with respect to particle and charge concen-
trations. The model also lacks protons and leptons (elec-
trons and muons). In fact, we will demonstrate that this
chargeless 2-flavor approach cannot satisfy chemical or
beta equilibrium. Jeong et al. [37] introduced a hard core
potential for nucleons by means of an excluded volume,
and reformulated the quarkyonic model so that it satisfies
quark-nucleon chemical equilibrium. However, their model
does not contain protons or leptons, and thus does not
permit beta equilibrium between hadrons and leptons.
Duarte et al. [38] have extended the excluded volume
approach to take beta equilibrium into account.
In this paper, we propose a quarkyonic model similar to

that of [32] but including protons and leptons with the
essential elements to satisfy chemical and beta equilibrium
that satisfies the experimental and observational constraints
on neutron star structure. We describe the chargeless 2-
flavor quark model in Sec. II, and then replace it in Sec. III
with a modified approach extended to include asymmetric
nucleon matter and leptons. In Sec. IV we point out the key
features of the quarkyonic EOS, and in Sec. V we show
how the available experimental and observational con-
straints can limit its parameter ranges. Section VI examines
the resulting semiuniversal relations involving the depend-
ence of neutron star structural quantities, such as the tidal
deformability and binding energy, on the neutron star mass
and radius, as well as implications for the direct Urca
process. We develop in Appendix a simpler ndu version of
quarkyonic matter, without the complications of leptons or
beta equilibrium, that is completely analytic, rendering it as
a particularly convenient and useful physically motivated
parametrized EOS for the interpretation of observatio-
nal data.

II. FORMULATION OF THE CHARGELESS
2-FLAVOR QUARKYONIC MODEL

The chargeless 2-flavor quarkyonic model [32] assumes
that strongly interacting quarks near the Fermi sea form
interacting neutrons, while the remaining d and u quarks
are noninteracting and fill the lowest momenta up to kFu
and kFd, respectively. The total baryon number density of
quarkyonic matter is

nB ¼ nn þ
Nc

3
ðnu þ ndÞ

¼ gs
2π2

�Z
kFn

k0n

k2dkþ Nc

3

�Z
kFu

0

k2dkþ
Z

kFd

0

k2dk

��

¼ gs
6π2

�
k3Fn − k30n þ

Nc

3
ðk3Fu þ k3FdÞ

�
ð1Þ

where kFn, kFu, and kFd are the Fermi momenta of neutrons
and u and d quarks, respectively. Fermion spin degeneracy
and quark color degeneracy are gs ¼ 2 and Nc ¼ 3,
respectively. The neutrons are restricted to momentum
states near the Fermi surface by the introduction of k0n,
the minimum allowed neutron momentum. It was arbitrar-
ily assumed that

k0n ¼ NckFd ¼ kFn

�
1 −

�
Λ

ℏkFnc

�
3

−
κΛ

N2
cℏkFnc

�
ð2Þ

so that nn and nd can both be written solely as functions of
kFn. To preserve charge neutrality, it was assumed

kFd ¼ 21=3kFu; ð3Þ

so that nu also can also be written solely in terms of kFn.
Note that the specification of a transition density nt
determines the parameter κ via

κ ¼ 9

�
ℏktnc
Λ

−
�

Λ
ℏktnc

�
2
�
; ð4Þ

where the corresponding neutron Fermi momentum at nt is
ktn ¼ ð3π2ntÞ1=3. It is interesting to note that in this model,
using gs ¼ 2 and Nc ¼ 3,

nB ¼ 1

3π2

�
k3Fn −

51

2
k3Fd

�
;

kFd ¼
kFn − ktn

3

�
1þ Λ3ðktn þ kFnÞ

ðℏcÞ3k2tnk2Fn

�
; ð5Þ

and both nB and kFd are explicit functions of kFn.
The energy density of interacting neutrons is the sum of

their relativistic kinetic and potential energy densities
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εnðkFn; k0nÞ ¼
gs
2π2

Z
kFn

k0n

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bc
4 þ ðℏkcÞ2

q
dk

þ nnVðnnÞ; ð6Þ

where mB is the baryon mass and VðnnÞ is the neutron
potential energy, assumed to depend only on nn. It is
assumed that the potential energy function remains the
same both below and above the density nt where free
quarks start to appear. It turns out that the particular choice
of nucleon potential is not crucial to achieve the goals of
achieving both a large maximum mass and reasonable
neutron star radii, given allowable variations in the param-
eters nt and Λ.
The quark energy densities are given by the expressions

for noninteracting fermions,

εd;u ¼
gsNc

2π2

Z
kFðd;uÞ

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

d;uc
4 þ ðℏkcÞ2

q
dk: ð7Þ

It is apparent that, with the use of Eqs. (2) and (3), the total
energy density ε ¼ εn þ εd þ εu can also be written as a
function of kFn alone. Defining the baryon chemical
potential by dε=dnB ¼ μB, the total pressure and sound
speed are

p ¼ nBμB − ε;
c2s
c2

¼ 1

μB

dp
dnB

: ð8Þ

It is straightforward to demonstrate that this model
cannot satisfy energy optimization with respect to the
constituent compositions nn, nd and nu, all of which are
functions of kFn alone. Minimizing the total energy density
at fixed nB with respect to the density of neutrons, d quarks
or u quarks, i.e., with respect to kFn, becomes tantamount to
setting the baryon chemical potential μB equal to zero,
which is contradictory. Therefore, neutrons and quarks are
not in chemical equilibrium. The two conditions involving
k0n of Eq. (17) overconstrain the system. If extended to
include protons and leptons, the energy of this particular
model could also not be optimized with respect to the
charge densities, which describes beta equilibrium.

III. THE MODIFIED QUARKYONIC MODEL

We seek a model that allows for energy minimization and
will also include leptons as well as protons. Leptons in beta
equilibrium consist of both electrons and muons as long as
nt ≳ ns, the nuclear saturation density 0.16 fm−3, which is
believed to be the case owing to the lack of experimental
information indicating otherwise. The total energy density is

ε ¼ εB þ εe þ εμ þ εd þ εu; ð9Þ

where εB is the energy density of interacting neutrons and
protons, while the energy densities of the leptons and quarks

are given by Eq. (7) for noninteracting fermions, using
gs ¼ 2, Nc ¼ 3ð1Þ for quarks (leptons), and the appropriate
Fermi momenta and masses. The lepton number densities
are ne ¼ k3Fe=ð3π2Þ and nμ ¼ k3μ=ð3π2Þ, and the total
pressure is p ¼ nBμ − ε where μ ¼ dε=dnB.
We will describe the interactions among nucleons with a

nucleon potential energy that depends on both neutron and
proton densities nn and np, respectively. We write this in
terms of 6 subparameters ½a0; b0; a1; b1; γ; γ1� fit to selected
properties of uniform nucleonic matter. We take the
symmetry contribution to be adequately described by
retention of just the lowest order quadratic term in the
neutron excess. We assume

Vðnn; npÞ ¼ 4xð1 − xÞða0uþ b0uγÞ
þ ð1 − 2xÞ2ða1uþ b1uγ1Þ; ð10Þ

where u ¼ ðnn þ npÞ=ns and x ¼ np=ðnn þ npÞ;
Vðnn; np ¼ 0Þ ¼ VðnnÞ. For symmetric nuclear matter
(SNM), the fitted quantities are the bulk binding energy
B ≃ 16 MeV, pressure (pB ¼ 0), and incompressibility
parameter K1=2 ≃ 220 MeV at ns. For pure neutron matter
(PNM), the fitted quantities are its energy (relative to the
baryon mass mB ¼ 939.5 MeV) E0 ¼ SV − B ≃ 15 MeV
and pressure 1.6MeVfm−3≲p0¼Lns=3≲4.0MeVfm−3

evaluated at the same density ns. Sv ≃ 31 MeV and
30 MeV≲ L≲ 70 MeV are the usual nuclear symmetry
energy parameters. Since L is by far the most uncertain of
the fitted nuclear quantities, we choose it to be the only
nucleonic free parameter. As is well known, the parameter
L has a strong correlation with the intermediate-mass (e.g.,
1.4 M⊙) neutron star radius R1.4.
The subparameters are determined using

γ¼ K1=2=9−T 00
1=2

T1=2−T 0
1=2þB

; b0¼
K1=2=9−T 00

1=2

γðγ−1Þ ;

a0¼−B−T1=2−b0; b1¼
L=3þB−SvþT0−T 0

0

γ1−1
; and

a1¼Sv−B−T0−b1; ð11Þ

where T1=2 ≃ 21.79 MeV, T 0
1=2¼udT1=2=du≃14.34MeV

and T 00
1=2 ¼ u2d2T1=2=du2 ≃ −5.030 MeV are the SNM

kinetic energy and its first two logarithmic derivatives
evaluated at ns. T0 ≃ 34.33 MeV and T 0

0 ¼ udT0=du ≃
22.41 MeV are the PNM kinetic energy and its first
logarithmic derivative evaluated at the same density. T1=2

and T0 are taken relative to mB. The parameters γ ≃
1.256; a0 ≃ −129.3 MeV and b0 ¼ 91.49 MeV are deter-
mined by properties of SNM, but don’t depend on the
symmetry parameters Sv or L. a1 and b1 are sensitive
to Sv, L and γ1, on the other hand. We obtain a1 ≃
−L=2–14.70 MeV and b1 ≃ L=2–4.63 MeV for the
choices SV ¼ 31 MeV and γ1 ¼ 5=3.
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The total energy density εB of interacting nucleons is

εB ¼
X
i¼n;p

gs
2π2

Z
kFi

k0i

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bc
4 þ ðℏkcÞ2

q
dk

þ ðnn þ npÞVðnn; npÞ: ð12Þ

Figure 1 shows the specific nucleon energy, εB=nB −mB,
as a function of density for SNM and PNM, assuming the
standard values ns ¼ 0.16 fm−3, B ¼ 16 MeV, K1=2 ¼
220 MeV, Sv ¼ 31 MeV, L ¼ 30, 50 and 70 MeV, and
γ1 ¼ 5=3. The choice of γ1 ¼ 5=3 gives an excellent
representation of recent chiral Lagrangian PNM calcula-
tions [18] for baryon densities 0.5ns < nB < 1.8ns (the
shaded region in Fig. 1). L ¼ 30 MeV and L ¼ 70 MeV
are seen to bracket the theoretical PNM results. The choice
L ¼ 30 MeV is also consistent with the theoretical mini-
mum for the PNM energy predicted by the unitary gas
constraint [19]. The neutron matter energy is larger than the
symmetric matter energy for all densities except at densities
nB ≳ 0.7 fm−3 in the case of a very soft symmetry energy,
i.e., L ¼ 30 MeV. A more complex SNM parametrization,
for example one that can also fit its skewness at ns, could
prevent this. This affects our results only marginally,
however.
In the neutron star crust, at densities below ncc≃

0.07 fm−3, we assume the SLy4 equation of state [39],
which nearly matches the PNM energies at ncc for all L
values considered. For comparison, the SLy4 EOS con-
tinued to high densities is shown in Fig. 1. Our results are
not sensitive to the precise choice of the crust EOS.

With the addition of d and u quarks, the general
conditions of baryon and charge conservation are

nB ¼ nn þ np þ
nd þ nu

3
; ð13Þ

nBYL ¼ ne þ nμ ¼ np þ
2nu − nd

3
; ð14Þ

where YL is the net lepton fraction.
The modified quarkyonic model retains the paradigm

that nucleons are restricted to momentum shells near the
Fermi surface for nB > nt. However, the imposition of the
constraint k0n ¼ 3kd is an additional relation between kFn
and kFd that is incompatible with energy minimization with
respect to particle compositions. We therefore abandon and
replace it with the condition of chemical equilibrium
among the nucleons and quarks. This is the key difference
between our model and that of McLerran and Reddy [32].
Since protons are now considered, we introduce the

minimum momentum for protons in quarkyonic matter,
k0p, such that nn;p ¼ gsðk3Fðn;pÞ − k3

0ðn;pÞÞ=ð6π2Þ. Both k0n
and k0p are assumed to be functions only of their corre-
sponding Fermi momenta by the relations

k0ðn;pÞ ¼ kFðn;pÞ

�
1 −

�
Λ

ℏkFðn;pÞc

�
2

−
κn;pΛ

9ℏkFðn;pÞc

�
; ð15Þ

which involve the parameters κn and κp. Note that these
functions are modified from Eq. (2) by a change of
exponent which forces k0ðn;pÞ to change more slowly when
quarkyonic matter appears, making for more stable sol-
utions in this regime. This assumption does not affect the
ability of this model to give rise to a significant increase in
the sound speed near the transition density.
It is also assumed that momenta restrictions on neutrons

and protons begin above a common transition density nt,
which determines κn;p:

κn;p ¼ 9

�
ℏktðn;pÞc

Λ
−

Λ
ℏktðn;pÞc

�
: ð16Þ

The transition Fermi momenta ktðn;pÞ are obtained from
beta equilibrium of the uniform n, p, e, μ system at the
density nt. Eliminating the κ parameters, Eq. (15) is
reformulated as

k0ðn;pÞ ¼ ðkFðn;pÞ − ktðn;pÞÞ
�
1þ Λ2

ðℏcÞ2kFðn;pÞktðn;pÞ

�
: ð17Þ

For sufficiently low values of L MeV, it is possible that
the symmetry energy can become negative at high densities
in hadronic matter, in which case dkFp=dnB < 0.
Depending on the parameters, this can result in a situation
in which kFp < ktp in quarkyonic matter above transition

FIG. 1. The energy per baryon E of symmetric nuclear matter
(SNM—black), and the energy per baryon of pure neutron matter
(PNM) for the standard parameter set (see text), for three values
of L (30 MeV—yellow, 50 MeV—green, 70 MeV—red). The
blue curve shows the crust equation of state, SLy4, continued to
high densities. The dashed curve shows the conjectured unitary
gas bound [19]. The shaded region indicates PNM ranges from
theoretical models [18].
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densities between 0.3ð0.6Þ fm−3 (for L¼30MeV and Λ ¼
500ð1700Þ MeV) and 0.6ð1.2Þ fm−3 (for L ¼ 40 MeV and
Λ ¼ 500ð1700Þ MeV). And if kFp were to fall to zero
before the quarkyonic sector is reached at nB ¼ nt, then the
lowest energy state would be PNM, dictating that kFp ¼ 0

at all higher densities including in the quarkyonic sector. If
kFp is positive when quarks appear, when kFp < ktp we
instead require k0p ¼ 0 in the quarkyonic sector because
otherwise Eq. (17) becomes ill defined, and this simply
means the proton Fermi shell is not “saturated.” We could
have chosen a slightly more complex SNM energy, such
that ESNM < EPNM at all densities, that would avoid these
situations yet would have little effect on the results of this
paper because the proton fraction is small. See the
Appendix for a simpler formulation that avoids this issue.
Strong interaction equilibrium dictates total energy

minimization with respect to particle concentrations at
fixed density and lepton fraction and is valid under nearly
all circumstances in astrophysical simulations. This con-
dition is equivalent to chemical equilibrium among the
nucleons and quarks, and leads to

μd ¼
2

3
μn −

1

3
μp; μu ¼

2

3
μp −

1

3
μn: ð18Þ

These relations replace expressions of the form k0ðn;pÞ ∝
kd;u that are integral to the model of [32]. The nucleon
chemical potentials are (see also [29])

μn;p ¼ ∂εB
∂nn;p ¼ ð1 − Kn;pÞ−1

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
Bc

4 þ ðℏckFðn;pÞÞ2
q

− Kn;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bc
4 þ ðℏck0ðn;pÞÞ2

q �
þ ∂½ðnn þ npÞVðnn; npÞ�

∂nn;p ; ð19Þ

where

Kn;p ¼
�
k0ðn;pÞ
kFðn;pÞ

�
2 dk0ðn;pÞ
dkFðn;pÞ

¼
�
k0ðn;pÞ
kFðn;pÞ

�
2
�
1þ

�
Λ

ℏckFðn;pÞ

�
2
�
: ð20Þ

The condition of beta, or weak-interaction, equilibrium
is equivalent to the additional minimization of the total
energy density with respect to the lepton concentrations at
fixed baryon density, which applies if weak-interaction
timescales are short compared to dynamical timescales.
Under conditions of charge neutrality, this gives

μe ¼ μμ ¼ μn − μp ¼ μd − μu: ð21Þ
One also finds that the effective chemical potential μ ¼
dε=dnB ¼ μn under conditions of chemical and beta

equilibrium. In matter composed of hadrons alone, the
beta equilibrium depends on the nucleon potential; values
of the lepton number, YL, are shown in Fig. 2 as a function
of density and the single nucleon parameter L.
The requirement that both flavors of quarks appear at the

same density nt means that the quark masses, like κn;p, are
not free model parameters. Their values are determined by
the ambient beta-equilibrium conditions at nt and therefore
depend on the nucleon potential. They are found from
Eq. (18) using ktd ¼ ktu ¼ 0:

md ¼
2

3
μtn −

1

3
μtp; mu ¼

2

3
μtp −

1

3
μtn; ð22Þ

where μtðn;pÞ are the beta-equilibrium values of the chemi-
cal potentials in npμematter at nt. Both masses are of order
mB=3, as expected for constituent quark masses, but
md −mu ¼ μtn − μtp, which depends on nt and V (i.e.,
L), and is in the range 80–250 MeV (Fig. 2).
The appearance of quarks for n > nt drastically alters

the composition. Figure 3 shows the particle fractions in
beta-equilibrium matter for a standard case with Λ ¼
1400 MeV, nt ¼ 0.3 fm−3 and L ¼ 50 MeV. For this
case κp ¼ −74.54, κn ¼ −29.00, mu ¼ 241.07 MeV, and
md ¼ 391.28 MeV. The corresponding Fermi wave num-
bers and minimum nucleon wave numbers k0ðn;pÞ in the
quarkyonic sector are displayed in Fig. 4.
For densities slightly in excess of nt, the total nucleon

density initially varies linearly with nB − nt ≡ δ, which
follows from baryon conservation since the quark densities
can be ignored (as we show below). The proton fraction
np=ðnn þ npÞ decreases linearly (but slowly) with increas-
ing δ because k0ðn;pÞ and kFðn;pÞ − ktðn;pÞ also vary linearly
with δ, and the neutron momenta k0;n and kF;n vary more

FIG. 2. The lepton fraction YL of pure hadronic matter in beta-
equilibrium as functions of nB and L. Overlain are contours of
μtn − μtp ¼ md −mu. Also shown is the threshold lepton fraction
for operation of the nucleon direct Urca neutrino cooling process.
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rapidly than their proton counterpart. In comparison, nd and
nu are initially small. It is found that, irrespective of the
value of Λ, the quark momenta scale as

ffiffiffi
δ

p
for small δ, so

that nd;u ∝ δ3=2.
However, both kFn and kFp saturate in the quarkyonic

sector with values near their values ktðn;pÞ at the transition
density as long as Λ > ℏckðn;pÞ, which is shown in Sec. V
to be necessary to satisfy the requirement that Mmax≳
2 M⊙. This can be understood as a consequence of the fact
that there is a maximum Fermi wave number kmðn;pÞ in the
quarkyonic sector. This is determined by

dnn;p
dkFðn;pÞ

¼
k2Fðn;pÞ
π2

ð1 − Kn;pÞ ¼ 0; ð23Þ

or simply Kn;p ¼ 1. Using Eq. (20), one finds

kmðn;pÞ ¼ k0ðn;pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Λ

ℏckmðn;pÞ

�
2

s
: ð24Þ

With Eq. (17), and since kFðn;pÞ − ktðn;pÞ ≪ ktðn;pÞ,

kmðn;pÞ − ktðn;pÞ

¼ kmðn;pÞ

�
1þ

�
Λ

ℏckmðn;pÞ

�
2
�
−1=2

×

�
1þ Λ2

ðℏcÞ2kmðn;pÞktðn;pÞ

�−1

≃ ktðn;pÞ

�
ℏcktðn;pÞ

Λ

�
3
�
1 −

3

2

�
ℏcktðn;pÞ

Λ

�
2

þ � � �
�
; ð25Þ

where we kept up to the quadratic order terms of an
expansion in ℏcktðn;pÞ=Λ, which is generally much smaller
than unity, in the last expression. Note that these relations
depend only on ktðn;pÞ and Λ and are valid for any nucleon
potential (i.e., L). Obviously, k0n;p ∼ ktðn;pÞðℏcktðn;pÞ=ΛÞ
and nn;p ∼ k3tðn;pÞ=ð3π2Þ also saturate. Since ktp < ktn, the

proton wave numbers and density approach their asymp-
totic values before their neutron counterparts. Therefore,
the nucleon particle fractions must monotonically fall with
increasing nB in the quarkyonic sector. Because the nucleon
fractions become small at high densities, the sound speed
tends to

ffiffiffiffiffiffiffiffi
1=3

p
, the value implied by quark asymptotic

freedom together with the relativistic behavior of the
leptons.
Another property of the quarkyonic system in beta

equilibrium observed in Fig. 4 is that the quark Fermi
momenta are nearly proportional to each other, with

FIG. 3. Particle fractions in beta equilibrium with L¼50MeV,
Λ ¼ 1400 MeV, and nt ¼ 0.3 fm−3. The black line shows the
lepton fraction YL.

FIG. 4. Particle wavenumbers for quarkyonic matter in beta
equilibrium with L ¼ 50 MeV, Λ ¼ 1400 MeV, and
nt ¼ 0.3 fm−3. Additionally are shown the minimum momenta
k0ðn;pÞ for nucleons in the quarkyonic sector.

FIG. 5. Beta equilibrium lepton fraction as functions of model
parameters L ¼ ½30; 50; 70� MeV and nt ¼ ½0.3; 0.5� fm−3. The
lower and upper members of each pair of curves have Λ ¼
800 MeV and 1700 MeV, respectively).
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kFd ≃ 21=3kFu at all densities. This indicates that the quark
and hadronic sectors are separately approximately charge
neutral, despite the fact that global charge neutrality was
imposed. This is reminiscent of the explicit assumption
concerning quark momenta in Ref. [32]. One also may note
that kFd increases more rapidly than k0n;p, contrary to the
assumption of McLerran and Reddy [32], who assumed
their ratio to be fixed at k0n=kFd ¼ Nc.
A comparison of the lepton fractions in beta equilibrium

with three different nucleon potentials and two sets of
standard quarkyonic parameters is shown in Fig 5. The
onset of quarks usually results in abrupt decreases in YL,
with exceptions for large nt and small L. It is apparent that
the lepton fractions in the quarkyonic sector are insensitive
to Λ.

IV. THE EQUATION OF STATE

In contrast to conventional models of quark matter, for
which the pressure initially remains constant or increases
slowly with increasing density beyond nt, the introduc-
tion of quarks in quarkyonic matter has a dramatic
effect. Details are shown for a particular parameter set
(L ¼ 50 MeV, nt ¼ 0.3 fm−3, and Λ ¼ 1400 MeV) in
Fig. 6. The hadronic pressure is pB ¼ μnnn þ μpnp − εB,
the leptonic pressure is pL ¼ μene þ μμnμ − εe − εμ and
the quark pressure is pQ ¼ μdnd þ μunu − εd − εu.
Breaking down the pressure p ¼ pB þ pL þ pQ and its
derivative in the form of the sound speed c2s=c2 ¼
μ−1dðpB þ pL þ pQÞ=dnB into separate contributions
from nucleons (B), leptons (L) and quarks (Q) shows that
the rapid increase in cs is due to nucleons, through the
restriction of their momenta. As the quarks become more
abundant, cs rapidly decreases due to their relativistic
nature. Leptons are relatively inconsequential.

FIG. 6. The pressure p (top panel) and sound speed cs
(bottom panel) for the case L ¼ 50 MeV, nt ¼ 0.3 fm−3, and
Λ ¼ 1400 MeV. The totals as well as the individual contributions
from baryons (B), leptons(L) and quarks (Q) are shown. The
lepton contributions are multiplied by 100 for clarity.

FIG. 7. The EOS for various combinations of model parameters, with the pressure p displayed in the left-hand panel and sound speed
cs in the right-hand panel. Dotted lines show the SLy4 EOS continued to high densities as well as the three versions of the hadronic EOS
with different L values.
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The EOS for several combinations of parameters are
illustrated in Fig. 7. The maximum sound speed is observed
to be primarily a function of Λ. The pressure of the
quarkyonic EOS increases at all densities as L is increased,
but always approaches the asymptotic limit p ∼ ε=3 for
large nt.
Mass-radius curves for the 13 EOSs displayed in Fig. 7

are illustrated in Fig. 8. Quarkyonic stars have larger radii
for a given mass, and also larger maximummasses, than for
the underlying hadronic EOS with the same value of L.
Generally, the radii for intermediate-mass stars increase
with increasing L, but they also increase with increasing
values of Λ and decreasing values of nt. The fact that the
pressure rapidly increases immediately beyond nt leads to
the increases in radii of stars larger than 1 M⊙ if nt ≲ 4ns.
The radii of 1.4 M⊙ stars is most sensitive to the pressure at
approximately 2ns [40], but are still influenced by some-
what larger values of nt.
Note that the hadronic EOS predicted for L ¼ 30 MeV

cannot achieve a maximum mass larger than about 1.7 M⊙
(Fig. 8), yet quarkyonic models with L ¼ 30 MeV have no
difficulty reaching masses in excess of 2.0 M⊙ if nt ≲
0.5 fm−3 (see Sec. V). It is of note that a wide range of
quarkyonic models can satisfy the GW170817 constraint
suggesting R1.4 ≲ 13.5 km even with the largest value of
L ¼ 70 MeV that is able to satisfy theoretical neutron
matter constraints in the vicinity of ns.

V. PARAMETER RANGES CONSTRAINED
BY CAUSALITY AND NEUTRON

STAR OBSERVATIONS

Mass, radius and causality constraints on the model
parameters are shown in Fig. 9. Radius constraints were

discussed in Sec. IV. The largest well-measured neutron
star mass is PSR J0740þ 6620, for which M ¼
2.14þ0.10

−0.09M⊙ [41]. There are other measured masses which
are smaller but have less uncertainty, such as M ¼ 2.01�
0.04 M⊙ for PSR J0438þ 0432 [42], and larger but with
more uncertainty, such as 2.27þ0.17

−0.15M⊙ for PSR J2215-
5135 [43]. These collectively form a lower limit to the
neutron star maximum mass Mmax.
A potential upper limit Mmax ≲ 2.3 M⊙ was afforded by

multimessenger observations of the binary neutron star
merger GW170817. This provided evidence that the
coalesced remnant initially formed a hypermassive neutron
star which was partially supported by differential rotation.
The support from differential rotation briefly (perhaps a
few tenths of a second) prevented the coalesced remnant
from immediately collapsing into a black hole, which
subsequently occurred if the remnant had a mass Mrem
greater than the maximum mass that could have been
supported by uniform rotation at the Keplerian (mass-
shedding) limit, about Mmax;u ≃ 1.17Mmax. An immediate
collapse would have short-circuited not only the observed
gamma-ray burst, which occurred 1.7 seconds after the
gravitational wave event, but also the extensive mass
ejection revealed by the appearance of the subsequent
kilonova. The maximum mass supported by differential
rotation is estimated to be about 1.5Mmax, so one finds
Mrem < 1.5Mmax. But the apparent existence of very high
opacity heavy elements in the ejecta offers evidence against
a long-lived uniformly rotating supermassive remnant with
Mmax < Mrem < Mmax;u. The large neutrino flux from a
surviving supermassive star would have protonized the
ejecta and halted the nucleosynthesis of the heaviest
elements. Taking into account the ejected mass, binding

FIG. 8. Mass-radius curves for the same EOSs displayed in
Fig. 7. The dark shaded region is prohibited by causality, and the
light shaded region would be prohibited if the sound speed was
limited by c2s ≤ c2=3.

FIG. 9. Plausible parameter ranges. Solid (dash-dotted) curves
show maximum mass Mmax=M⊙ (R1.4=km) contours for quar-
kyonic stars in beta equilibrium as functions of Λ and nt for two
extreme values of L, 30 MeV (blue) and 70 MeV (red). The
dashed contours indicate causality bounds. The dotted verical line
demarks the DU threshold density for L ¼ 70 MeV.
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energy corrections (more than 10% of the rest masses), and
the measured total gravitational mass of the components,
Mtot ≃ 2.73–2.80 M⊙, the condition Mrem ≳Mmax;u sug-
gests an upper limit to Mmax ≲ 2.2–2.3 M⊙ [44].
The mass, radius and causality constraints effectively

bracket the ranges of allowed parameters, as can be seen in
Fig. 9. The causality constraint effectively limits Λ to
values less than about 1600 MeV irrespective of assumed
values for nt and L. The constraint on R1.4 largely limits nt
to be larger than about 0.20 ð0.25Þ fm−3 for Λ≳ 800 MeV
for L ¼ 30ð70Þ MeV; smaller values of nt are allowed for
Λ≲ 800 MeV, but for Λ≲ 500 MeV quarkyonic matter
becomes possible only at unrealistically small values of
nt ≃ n0. The third boundary is set by the lower limit on the
neutron star maximum mass; the greater is Mmax, the more
parameter space is confined.
As an alternative to the radius constraint suggested by

GW170817 and x-ray observations of neutron stars,
GW170817 implies an upper limit to the tidal deformability
of 1.4 M⊙ neutron stars Λ̄1.4 < 800 [3] or Λ̄1.4 ≲ 600 [4,5].
Λ̄ is the dimensionless tidal deformability, effectively the
constant of proportionality between an external tidal field
and the quadrupole deformation of a neutron star. It can be
straightforwardly determined from a first-order differential
equation [45,46] simultaneously integrated with the usual
TOV differential equations for neutron star structure. This
deformability constraint is consistent, approximately, with
the condition R1.4 ≲ 13 km. Parameter space constrained
using Λ̄1.4 instead of R1.4, together withMmax > 2 M⊙ and
causality, is shown in Fig. 10.
Irrespective of the choice of constraints, Figs. 9 and 10

indicate the ranges of permissible parameters are very large.
Fine-tuning of the quarkyonic or hadronic model param-
eters, including the requirement that nt be very close to ns
(for which there is no experimental support), is not needed
as is the situation for conventional hybrid quark-hadron
models [22,35,36,47].

VI. DISCUSSION AND CONCLUSIONS

The modified quarkyonic EOS offers an alternative for
the parametrized description of high-density matter in
comparison to piecewise polytropes [20], constant sound
speed [21,22], or spectral decomposition [23] methods. Its
rapidly varying sound speed and its narrow peak are
features impossible to mimic with these approaches. The
model presented here has only three parameters, making its
parameterized use in statistical studies of observational data
straightforward. Nevertheless, additional parameters can be
easily incorporated. For example, one could replace the
common Λ with Λn and Λp, allow d and u quarks to appear
at different densities, and/or introduce more parameters to
describe the hadronic phase.
To demonstrate the utility of using the quarkyonic model

as a parameterized high-density EOS, we compare the
resulting bounds on some semi-universal relations for
neutron stars with those established from three-parameter
piecewise polytrope models (as used, for example, by Özel
and Psaltis [48] and Steiner et al. [49]). We will focus on
relations involving the tidal deformability and binding
energy.
Zhao and Lattimer [50] discovered, using piecewise

polytropes, that Λ̄ inversely correlates with ðGM=Rc2Þ6.
They found, for 1.1 M⊙ < M < 1.6 M⊙ (the range of
component masses inferred from the accurately determined
chirp mass M ¼ 1.188 M⊙ of GW170817), that the qua-
ntitya ¼ Λ̄ðGM=Rc2Þ6was confined to the relatively narrow
range a¼0.0085�0.0010 ifMmax>2M⊙. Figure 11 shows
this correlation for quarkyonic model parameters restricted to
30 MeV < L < 70 MeV and Λ and nt bounded by the
constraints 2 M⊙ < Mmax < 2.3 M⊙ and R1.4 ≤ 13.5 km
(see Fig. 9). In both parameterizations the lower bounds
are slightly sensitive to the assumedminimumvalue ofMmax.
Theupper bounds, however, arequite sensitive to the assumed
maximum value ofMmax for quarkyonic matter, while nearly
independent of Mmax for piecewise polytropes. The quar-
kyonic bounds are found to be a ¼ 0.0099� 0.0021 with a
somewhat larger range than determined using piecewise
polytropes,a ¼ 0.0089� 0.0010 [51]. This is not surprising,
considering that the quarkyonicmodel samplesmore extreme
pressure-energy density and sound speed-density behaviors.
In both cases, it is seen that restricting the range of Mmax
reduces the uncertainty in a, but more so for quarkyonic stars
than for hadronic stars. Overall, it appears that piecewise
polytropes may understate the uncertainty range for this
correlation, an important consideration when attempting to
deduce the EOS from observational data.
The binding energy is the difference between baryon and

gravitational masses, BE = M −Mb, where Mb is the total
neutron star baryon number times the baryon rest mass.
Upper and lower bounds on this quantity as a function ofM
are shown in Fig. 11 and compared to analogous bounds
derived from piecewise polytropes [50]. In this case, there
is less difference between the two approaches, and the

FIG. 10. The same as Fig. 9, but showing tidal deformability
Λ̄1.4 instead of R1.4 contours.
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lower bounds for each type of EOS are insensitive to the
assumedMmax. However, the upper bounds for each type of
EOS decrease with assumed Mmax, in contrast to the
situation for Λ̄.
The quarkyonic EOS also has implications for the

cooling of neutron stars through the operation of the
nucleon direct Urca (DU) process

pþ e− → nþ νe; n → pþ e− þ ν̄e: ð26Þ

The threshold for its operation is the kinematic condition

kFn ≤ kFp þ kFe; ð27Þ

which requires a minimum YL between 0.11 and 0.14 [52]
within the hadronic sector. This is never achieved for L≲
50 MeV for the particular interaction we employ as long as
nB ≲ 0.7 fm−3. Even in the stiffer cases, the threshold is not
exceeded until relatively high densities are reached.
Because YL abruptly decreases in quarkyonic matter for
nB > nt, it becomes increasingly hard to satisfy the
kinematic constraint as the density increases in the quar-
kyonic sector. Thus, the DU process can only operate if it is
already permitted in hadronic matter at densities nB < nt.
Then it would operate in a shell centered at nt, but would
nonetheless be effective in rapidly cooling neutron stars.
According to the minimal cooling paradigm [53,54], most
neutron star thermal emission observations are consistent
with the lack of DU cooling. The few exceptions could be
explained by relatively massive neutron stars which might
have central densities large enough for DU to operate. This
scenario would also fit quarkyonic stars, if nt is large
enough and if L is not too small. Figure 2 explicitly shows
the required conditions.

Deconfined quarks can also participate in a direct Urca
process

d → e− þ uþ ν̄e; uþ e− → dþ νe; ð28Þ

having the kinematic requirement kFd þ kFu > kFe. This
condition would be satisfied in quarkyonic matter at
densities slightly in excess of nt irrespective of the value
of L because the quark abundances both grow rapidly with
density. However, the final momentum states of the quarks,
which have to be above their Fermi surfaces, are blocked by
nucleons occupying those states. Therefore, a direct Urca
process involving quarks may not be possible.
It is interesting to observe that quarkyonic configurations

have the property that R2.0 ≥ R1.4, especially for largeΛ and
small nt values. This results from a positive slope dR=dM at
moderate masses. ðc2=GÞðdR=dMÞ1.4 ≳ 1 can always be
achieved for 1.4 M⊙ stars as long as nt is small andΛ is large,
no matter how soft the symmetry energy is. For example,
hadronic (quarkyonic) stars with L ¼ 30, 50 or 70 MeV
have ðc2=GÞðdR=dMÞ1.4 ¼ −1.25ð1.16Þ;−0.48ð1.09Þ or
−0.5ð1.0Þ, respectively, assuming nt ¼ 0.20 fm−3 and Λ ¼
1600 MeV for the quarkyonic stars. Thismay be of interest in
viewof the forthcomingNICER radiusmeasurements of PSR
J0740þ 6620 whose mass is estimated to be 2.14þ0.10

−0.09M⊙
from pulsar timing observations [41]. The large measured
mass of PSR J0740þ 6620 contrasts with the lower mass
estimate associatedwith anotherNICER target, PSR J0030þ
0451 with 1.44þ0.15

−0.14M⊙ [8,55]. A measurement resulting in
evidence that R2.0 ≳ R1.4 would bolster support for a quar-
kyoniclike dense matter EOS with a sharp peak in cs in the
vicinity of 2 − 4ns.
In summary, we have formulated a model of quark-

yonic matter that can be a useful tool for parametrizing
the high-density EOS. Parametrized high-density EOSs

FIG. 11. Comparison of semi-universal relations for tidal deformability Λ̄ and binding energy BE between quarkyonic (solid curves)
and piecewise polytrope (dashed curves) parametrizations. The left (right) panel shows Λ̄ðGM=Rc2Þ6 (BE) as a function of mass. In both
cases, model parameters are constrained to satisfy 30 MeV < L < 70 MeV, R1.4 ≤ 13.5 km and selected maximum mass Mmax range.
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are frequently used in the interpretation of astrophysical
observations. The quarkyonic model has several advan-
tages relative to alternative models involving piecewise
polytropes, power-law expansions, relativistic mean-field
theory or spectral decomposition. It can be used to simulate
hybrid stars satisfying observed maximum mass and radius
constraints without forcing the expected quark-hadron
transition to lie abnormally close to the nuclear saturation
density. In fact, if one desires a simpler high-density
parametrized EOS with all the advantages and physical
motivations of the beta-equilibrium quarkyonic model but
without concern for its compositional details, we develop in
Appendix a pure-neutron matter version, also with three
parameters, that is completely analytic and therefore
particularly convenient for the interpretation of observa-
tional data.
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APPENDIX: SIMPLIFIED ndu
QUARKYONIC MODEL

In many applications of parametrized EOSs, it is not
necessary to consider the underlying compositional details,
such as the presence of leptons or beta equilibrium. Here,
we present a simpler version of quarkyonic matter involv-
ing chemical equilibrium among neutrons and d and u
quarks that has the advantageous sound-speed behavior of
the beta-equilibrium version and is also completely ana-
lytic. Because in beta equilibrium the lepton fractions are
generally small, this ndu version closely mimics the
behavior of the beta-equilibrium version.
Nucleons are described as in the beta-equilibrium

version. For nB < 0.5ns we employ the SLy4 crust EOS.
For greater densities, we assume the nucleon potential of
Eq. (10) with np ¼ 0, that is

VðnnÞ ¼ a1uþ b1uγ1 ; ðA1Þ

where u ¼ nn=ns. For densities between the crust and nt
the baryon density and chemical potential are

nB ¼ nn ¼ k3Fn=ð3π2Þ; ðA2Þ

μ ¼ μn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ ðℏkFncÞ2
q

þ ∂nnVðnnÞ
∂nn : ðA3Þ

ε ¼ εB is given by Eq. (12) for neutrons with k0n ¼ 0.

Quarkyonic matter appears at the density nt and is in
chemical equilibrium such that

μn ¼ 2μd þ μu: ðA4Þ

The properties of ndu quarkyonic matter are insensitive to
the mass ratio md=mu as long as it is of order of magnitude
unity; therefore, we assume mu ¼ md ¼ μnt=3.
In the quarkyonic sector, charge neutrality requires

k3Fu ¼ k3Fd=2. Equation (A4) has the analytic solution for
kFd as a function of kFn:

kFd ¼
μn
ℏcC

ð8 − C − 3Cm2
d=μ

2
n þ 4

ffiffiffiffi
Q

p
Þ1=2; ðA5Þ

where C ¼ 4 − 2−2=3 and Q ¼ 2−2=3 þ CðC − 3Þm2
d=μ

2
n.

Equation (19) gives μnðkFnÞ where k0n is given by (17).
The total baryon density is

nB ¼ k3Fn − k30n
3π2

þ k3Fd
2π2

; ðA6Þ

and is a monotonically increasing function of kFn for all
parameter values. The neutron and quark energy densities
are given by Eqs. (12) and (7) as in the full model; the
neutron wavenumber saturates for nB > nt to the value kmn
according to Eq. (24), as long as Λ=ðℏktnÞ > 0.
For given values of nt, Λ and L, this model gives very

similar results as for the full model. For comparison,
Fig. 12 shows the allowed parameter space of the ndu
version of the quarkyonic matter EOS.

FIG. 12. Parameter space for the ndu version of the quarkyonic
matter EOS. Similar to Fig. 9 showing contours of R1.4,Mmax and
c2s ¼ 1 for L ¼ 30 MeV and L ¼ 70 MeV.
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