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We investigate the impact of the neutron-star matter equation of state on the f- and p1-mode oscillations
of neutron stars obtained within the Cowling approximation and linearized general relativity. The f- and
p1-mode oscillation frequencies, and their damping times are calculated using representative sets of
Skyrme Hartree-Fock and relativistic mean-field models, all of which reproduce nuclear systematics and
support 2 M⊙ neutron stars. Our study shows strong correlations between the frequencies of f- and
p1-modes and their damping times with the pressure of β-equilibrated matter at densities equal to or slightly
higher than the nuclear saturation density ρ0. Such correlations are found to be almost independent of the
composition of the stars. The frequency of the p1-mode of 1.4 M⊙ star is strongly correlated with the slope
of the symmetry energy L0 and β-equilibrated pressure at density ρ0. Compared to GR calculations, the
error in the Cowling approximation for the f-mode is about 30% for neutron stars of low mass, whereas it
decreases with increasing mass. The accuracy of the p1-mode is better than 15% for neutron stars of
maximum mass, and improves for lower masses and higher number of radial nodes.
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I. INTRODUCTION

Oscillation modes are generated when a neutron star
(NS) is perturbed by an external or an internal disturbance.
An oscillating NS can have different quasinormal modes
(QNMs), categorized according to the restoring force that
brings them back to equilibrium. QNMs can be funda-
mental mode (f-mode), pressure mode (p-mode), gravity
mode (g-mode), rotational mode (r-mode), space-time
mode (w-mode), etc [1]. The frequency of these oscillations
depends upon the interior structure, and in some cases, the
composition of the stars [2]. Moreover, these modes mainly
contribute to a NS’s gravitational wave emission. In order
to study these oscillation frequencies, we need to solve the
fluid perturbation equations along with the Tolman-
Oppenheimer-Volkoff (TOV) equations in general relativity
(GR) [2,3].
Among the various QNMs studied theoretically, the

f-mode is the most promising one to be observed first.
The proto-neutron star (PNS) formed in a core-collapse
supernova has long been considered as a potential gravi-
tational-wave source for LIGO and Virgo detectors [4].

Numerical simulation shows that about 10% of the gravi-
tational radiation is associated with the l ¼ 2, m ¼ 1; 2
f-mode oscillation [5]. The total gravitational radiation
energy could reach 1044–1047 ergs depending on the mass
and rotation rate of the progenitor [6]. Only galactic sources
with distance D < 20 kpc are likely to be observed in
advanced LIGO observations, at a rate of a few per century
[7]. The f-mode frequency of a proto-neutron star with
high temperature and high lepton fraction is lower than that
for the NS which are considered here. More likely to be
observed are signals from the remnants of NS mergers, but
they will likely be complicated. Numerical simulation of
an equal-mass NS merger shows that the dominant fluid
oscillation of a supermassive NS remnant coincides with
them ¼ 2 f-mode [8], and has a strong correlation with the
(zero temperature) isolated NS f-mode frequency [9]. The
peak frequency in supermassive NSs is almost equal to that
of the nonrotating f-mode frequency of isolated NSs with
the same mass as each of the merging components [10].
With third generation gravitational wave telescopes such as
the Cosmic Explorer [11] and Einstein telescope [12], the
predicted event rate improves further to 0.06 yr−1 to 4 yr−1,
which is promising [3,13].
Besides directly observing gravitational radiation from

the fluid oscillations in a proto-neutron star and supra-
massive NS remnant, there is another direct method to
measure QNMs of NSs by analysing NS merger waveform
through dynamical tidal coupling [14–16]. During the
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inspiral of binary NSs, QNM oscillation can be excited by
the dynamical tide when the orbital frequency approaches
QNM frequency, which leads to loss of orbital angular
momentum. The significance of the signal is determined by
the QNM frequency as well as its coupling to dynamical
tidal field. Because the g-mode has a low frequency, tidal
interactions could excite g-mode oscillations well before
resonances with the f-mode is reached during the last
part of the inspiral. However, the fluid perturbation of the
g-mode peaks at the stellar center and thus has a weaker
coupling to the tidal field. In contrast, the fluid perturbation
of the f- and p-modes peak at the stellar surface with a
stronger coupling to the tidal field. Indeed, the f- and
p-mode frequencies of nonrotating NSs are too high to be
excited in NS mergers. QNMs of rotating NS can be
promoted by the NS spin ωs, because the resonant
frequency could be reduced to ωf − 2ωs, where ωs is
the spin frequency of the NS. For a millisecond pulsar,
f-mode resonances could cause phase advances up to
hundreds of cycles [17,18]. A lower bound to the f-mode
frequency has been estimated from the nondetection of a
significant phase shift due to f-mode tidal resonance
in GW170817, while an upper bound can be estimated
from the Ωf − Λ universal relation. The resulting 90%
credible interval of f-mode frequency for GW170817 is
1.43 kHz < νf < 2.90 kHz (1.48 kHz < νf < 3.18 kHz)
for the more (less) massive NS in the binary.
The f-mode of neutron stars correlates with many

NS properties including compactness [19], moment of
inertia [20] and static tidal polarizability [21,22]. Such
universal relations hold even for bare quark stars without
crust or hybrid NSs with first order transitions [3].
However, p-modes have very weak correlation with other
NS properties [19]. Because p-mode oscillation dominates
in the stellar surface, it is sensitive to the equation of state
(EOS) at much lower densities.
One of the objectives in this work is calculate f-mode and

lowest order p-mode frequencies and damping times by
solving general relativistic nonradial oscillation equations
[23,24] in the form an ordinary differential equation (ODE)
eigenvalue problem. These equations are for even-parity
modes that include f-, g-, p-, and w-modes. We ignore the
rotation of NSs which could slightly increase the f- and
p-mode frequencies [25,26]. The results so obtained will
then be compared with those obtained using the Cowling
approximation to assess its accuracy. Many previous studies
have used the Cowling approximation [27–30], which lacks
dissipation due to gravitational waves. The Cowling
approximation introduces about a 20%–30% error in the
f-mode frequency [3,31–33], which is significantly less
accurate than that of the Ωf − Ī − Λ universal relations.
A 10% error in the compositional g-mode frequency [2] and
19%error in the discontinuity g-mode frequency [3,32] from
the Cowling approximation has also been found. However,
the accuracy of the Cowling approximation for the and

p-mode is not well quantified. In addition such comparisons
have only beenmade for schematic EOSs such as piece-wise
polytropes. Hence, another of our objective is to use physics-
based EOSs that reproduce laboratory as well as observa-
tional data.
Two classes of EOSs are chosen for our study. The first

one is based on nonrelativistic zero-range Skyrme inter-
actions using which calculations of the EOSs are performed
in the Hartree-Fock approach; these models are labeled
SHF. Care is taken to render these EOSs causal, at least for
densities within the cores of the NSs. The second class of
EOSs are relativistic mean-field models (RMF) that are
naturally causal. A total of 35 EOSs are employed all of
which reproduce nuclear systematics at near saturation
density of ρ0 ≃ 0.16� 0.01 fm−3 and are able to support a
NS of ≥2 M⊙. We also compare these EOSs with recent
chiral effective field theoretical (EFT) calculations [34] for
densities up to 2ρ0, the limiting density up to which such
calculations are valid. Many of the SHF and RMF EOSs fall
within the �2σ region of the chiral EFT results.
An important further objective of our work is to explore

possible universal relations connecting the f- and p-mode
frequencies with both nuclear and observational properties,
such as the NSs mass, tidal deformability, etc., as well as
EOS characteristics such as the slope of symmetry energy
at ρ0 and pressure at ρ0 and 2ρ0. In all of these cases, we
find interesting correlations and proffer the underlying
cause for such behaviors.
This paper is organized as follows. Section II contains a

description of nonradial oscillations in GR and the Cowling
approximation to full GR. The EOSs used in this work
are described in Sec. III. Our results and discussion are
contained in Sec. IV. A critical analysis of correlations
including the dependence on the sample sizes of EOSs and
findings in earlier works is provided in Sec. V. Finally,
Sec. VI presents a summary along with our conclusions.

II. NONRADIAL OSCILLATIONS
IN GENERAL RELATIVITY

NS oscillations that couple to gravitational radiation
were first studied by Thorne et al. [35]. Such oscillations
involve linear scalar variations of pressure and density.
Only even-parity perturbations of the Regge-Wheeler
metric are relevant. The appropriate line element is thus

ds2 ¼ −eνðrÞ½1þ rlH0ðrÞeiωtYlmðϕ; θÞ�c2dt2
þ eλðrÞ½1 − rlH0ðrÞeiωtYlmðϕ; θÞ�dr2
þ ½1 − rlKðrÞeiωtYlmðϕ; θÞ�r2dΩ2

− 2iωrlþ1H1ðrÞeiωtYlmðϕ; θÞdtdr; ð1Þ

where
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eλðrÞ ¼ 1

1 − 2bðrÞ ð2Þ

and

r
dνðrÞ
dr

¼ 2eλðrÞQðrÞ ð3Þ

QðrÞ ¼ bðrÞ þ 4πGr2pðrÞ
c4

ð4Þ

with the boundary condition νðRÞ¼−λðRÞ. Above, bðrÞ ¼
2GmðrÞ=ðc2rÞ, mðrÞ and pðrÞ are the enclosed mass and
pressure at radius r, respectively. The angular part is
characterized by the angular quantum number l and
azimuthal quantum number m in the spherical harmonics
Ylm; m is degenerate for the nonrotating NSs we calculate
here. Perturbations of the metric are described by the
functions H0, H1, and K. The real part of the complex
eigenvalue ω is the oscillation frequency, whereas the
imaginary component is the inverse of the damping time
(positive) or instability time (negative).
The Lagrangian displacement vector

ξr ¼ rl−1e−
λ
2WYl

meiωt ð5Þ

ξθ ¼ −rl−2V∂θYl
meiωt ð6Þ

ξϕ ¼ −
rl−2

sin2 θ
V∂ϕYl

meiωt; ð7Þ

describes fluid perturbations inside the star with amplitudes
W and V both of which have the dimension ½R�2−l, where R
is the radius of NS. In addition, an auxiliary function X,
related to Lagrangian pressure variations, is defined as

Δp ¼ −rle−ν
2XYl

meiωt: ð8Þ

In some range of frequency, the ODEs governing
NS oscillation can exhibit a singularity. In order to avoid
such a singularity, Lindblom et al. [36,37] choose the
four degrees of freedom to be H1, K,W, and X. Evaluating
the two remaining functions H0 and V in terms of them
yields

H0 ¼ f8πr2e−ν=2X − ½ðnl þ 1ÞQ − ω2r2e−ðνþλÞ�H1

þ ½nl − ω2r2e−ν − QðeλQ − 1Þ�Kgð2bþ nl þ QÞ−1;
ð9Þ

V ¼
�

X
εþ p

−
Q
r2
eðνþλÞ=2W − eν=2

H0

2

�
eν=2

ω2
; ð10Þ

where nl ¼ ðl − 1Þðlþ 2Þ=2 and ε is the local energy
density. By expanding Einstein’s equation to first-order,

the homogeneous linear differential equations forH1, K,W
and X are [37],

r
dH1

dr
¼ −½lþ 1þ 2beλ þ 4πr2eλðp − εÞ�H1

þ eλ½H0 þ K − 16πðεþ pÞV�; ð11Þ

r
dK
dr

¼ H0 þ ðnl þ 1ÞH1

þ ½eλQ − l − 1�K − 8πðεþ pÞeλ=2W; ð12Þ

r
dW
dr

¼ −ðlþ 1Þ½W þ le
λ
2V�

þ r2eλ=2
�

e−ν=2X
ðεþ pÞc2ad

þH0

2
þ K

�
; ð13Þ

r
dX
dr

¼ −lX þ ðεþ pÞeν=2
2

×

�
ð1 − eλQÞH0 þ ðr2ω2e−ν þ nl þ 1ÞH1

þ ð3eλQ − 1ÞK −
4ðnl þ 1ÞeλQ

r2
V − 2

�
ω2eλ=2−ν

þ 4πðεþ pÞeλ=2−r2 d
dr

�
eλ=2Q
r3

��
W

�
; ð14Þ

where c2ad is the adiabatic sound speed of NS matter under
oscillations. In this work, we approximate this speed of
sound with the equilibrium sound speed c2eq ¼ dp=dε.
Generally, c2ad is usually slightly larger than the equilibrium
sound speed c2eq due to lag in weak equilibrium [38,39], and
temperature equilibrium [40,41].
Perturbations at the center of the star r ¼ 0 are subject to

the boundary conditions

Wð0Þ ¼ 1 ð15Þ

Xð0Þ ¼ ðε0þp0Þeν0=2

×

��
4π

3
ðε0þ 3p0Þ−

ω2

l
e−ν0

�
Wð0ÞþKð0Þ

2

�
ð16Þ

H1ð0Þ ¼
lKð0Þ þ 8πðε0 þ p0ÞWð0Þ

nl þ 1
ð17Þ

XðRÞ ¼ 0: ð18Þ

The last boundary condition above is obtained by first
solving the two trial solutions withKð0Þ ¼ �ðε0 þ p0Þ and
then constructing a linear combination to obtain the correct
solution that satisfies the boundary condition Xðr¼RÞ¼0.
The latter boundary condition corresponds to no pressure
variations at the surface. By construction, H0ð0Þ ¼ Kð0Þ.
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Exterior solutions. Outside the NS, fluid perturbations
W, V and X vanish and the metric perturbations follow
Zerilli’s differential equation

d2Z=dr�2 ¼ ðVZðrÞ − ω2ÞZ: ð19Þ

The function Z is defined through [42]

�
KðrÞ
H1ðrÞ

�
¼

�
gðrÞ 1

hðrÞ kðrÞ

��
Zðr�Þ=r

dZðr�Þ=dr�
�
;

gðrÞ ¼ nðnþ 1Þ þ 3nbþ 6b2

ðnþ 3bÞ ;

hðrÞ ¼ ðn − 3nb − 3b2Þ
ð1 − 2bÞðnþ 3bÞ ;

kðrÞ≡ dr�

dr
¼ 1

1 − 2b
; ð20Þ

and an effective potential

VZðrÞ¼ð1−2bÞ2n
2ðnþ1Þþ6n2bþ18nb2þ18b3

r2ðnþ3bÞ2 ; ð21Þ

where b ¼ GM=ðc2rÞ since mðr > RÞ ¼ M. We first solve
Eqs. (11)–(14) from the stellar center to the surface. Then,
we evaluate ZðRÞ by the matching condition Eq. (20) and
use it as the initial boundary condition to solve Eq. (19)
from the stellar surface to r≳ 100 km. In the far-field limit,
the solution Z can be decomposed into incoming (Zþ) and
outgoing (Z−) spherical gravitational radiation:

�
ZðωÞ
dZ=dr�

�
¼

�
Z−ðωÞ ZþðωÞ
dZ−=dr� dZþ=dr�

��
A−ðωÞ
AþðωÞ

�
;

Z− ¼ e−iωr�
�
α0 þ

α1
r
þ α2

r2
þOðr−3Þ

�
;

dZ−
dr�

¼ −iωe−iωr�
�
α0 þ

α1
r

þ α2 þ iα1ð1 − 2bÞ=ω
r2

þOðr−3Þ
�
;

α1 ¼
−iðnþ 1Þα0

ω
;

α2 ¼
½−nðnþ 1Þ þ iMωð3=2þ 3=nÞ�α0

2ω2
; ð22Þ

where AþðωÞ and A−ðωÞ are the corresponding amplitudes,
and Zþ is the complex conjugate of Z−.
Numerical notes. To evaluate AþðωÞ, we used the

complex-valued ODE solver zvode [43]. The solver zvode
uses implicit Adams method for nonstiff problems and a
method based on backward differentiation formulas for stiff
problems. The integration steps are automatically adjusted
to yield a specified relative error tolerance. In order to take

care of the imaginary part of ω, which is over 1000 times
smaller than the real part, we need to keep the relative error
of our ODE solver to 10−6 for H1, K, W, X, and Z. The
quantity A−ðωÞ is evaluated by Eq. (22) at r ¼ 25ω−1 and
r ¼ 50ω−1 to guarantee convergence within 10−6.
Up to this point, we have discussed the ODEs and

boundary conditions for the initial value problem of
all perturbation functions with a given oscillation frequency
ω. The eigenvalue problem is defined by the pure out-
going gravitational wave boundary condition at far-field,
AþðωÞ ¼ 0. In order to solve the eigenvalue problem, we
use a complex root finding algorithm which takes about 8
Newton-Raphson iterations to converge.
By solving the eigenvalue problem we can calculate even

parity quasinormal modes of any order (n ¼ 0, 1, etc.), and
angular number (l − 2, 3, etc.). Radial perturbation func-
tions can have different number of turnovers (nodes) n for
different quasinormal modes. The n ¼ 0 modes that have
no nodes are referred to as the f-modes, whereas those with
n ¼ 1; 2, etc., have the corresponding number of nodes
and are termed as the p-modes. While we calculate f- and
p-modes of arbitrary order n, in this work we compute the
l ¼ 2 quasinormal f-mode (n ¼ 0 of W and V) and the
lowest order p-mode (n ¼ 1 and l ¼ 2 of W and V) as
frequencies of higher order p-modes are too large com-
pared with the detection limits. Henceforth, we will refer to
the p-modes with n ¼ 1 as p1 modes.
The nonradial modes calculated by our codes are in

agreement to four significant digits with the results given in
the tables of the pioneering works of [23,44,45] for f- and
p-modes as well as the discontinuity g-mode [3] and the
compositional g-mode [2]. Profiles of the f- and p-modes
will be presented in the section on results.

A. Relativistic Cowling approximation

In Newtonian theory of stellar pulsations, the perturba-
tion of the gravity field is neglected for fluid modes. This
simplification is known as the Cowling approximation [46].
In the relativistic theory, the perturbation of the GR metric
is often neglected as well, which leads to the relativistic
Cowling approximation [47]. The relativistic Cowling
equations are obtained by setting H0 ¼ H1 ¼ K ¼ 0 in
Eqs. (10), (13), (14), and furthermore, dropping the term
−4πðεþ pÞ2eðνþλÞ=2W in Eq. (14). These simplifications
lead to [2],

dW
d ln r

¼ −ðlþ 1Þ½W − leνþλ=2U�

−
eλ=2ðωrÞ2

c2ad

�
U −

eλ=2Q
ðωrÞ2 W

�
; ð23Þ

dU
d ln r

¼ eλ=2−ν½W − leν−λ=2U�; ð24Þ
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where W¼eλ=2r1−lξr and U¼−e−νV¼r−lω−2δp=ðεþpÞ,
ξr are radial Lagrangian displacements defined in
Eq. (5) and δP is the Eulerian perturbation of pressure,
which is related to the Lagrangian perturbation by ΔP ¼
δP − ðεþ pÞ dΦdr ξr. The boundary conditions can be written
explicitly as,

W
U

����
r¼0

¼ leνjr¼0 ð25Þ

W
U

����
p¼0

¼ ω2R3

GM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
c2R

r
: ð26Þ

These equations determine the eigenmode frequency of the
oscillation in the relativistic Cowling approximation.

III. EQUATIONS OF STATE

We have considered a diverse set of EOSs for charge
neutral and β-equilibrated neutron star matter that are
obtained using relativistic and nonrelativistic mean-field
models. Two different variants of the relativistic mean-field
(RMF) models: (1) models with nonlinear self and/or
mixed interaction terms with constant coupling strengths,
and (2) models with only linear interaction terms, but
density-dependent coupling strengths have been employed.
The RMF models with density-independent coupling
considered are BSR2, BSR6 [48,49], GM1 [50], NL3
[51], NL3ωρ03 [52], IOPB-I [53,54], G3 [54,55], TM1
[56], and FSUG [57]. The RMF models with density-
dependent couplings are DD2 [58],DDHδ [59], and
DDME2 [60]. The nonrelativistic mean-field models con-
sidered employ the Skyrme Hartree-Fock (SHF) approach
and they are SKa, SKb [61], SkI2, SkI3, SkI4, SkI5 [62],
SkI6 [63], SLY2, SLY9 [64], SLY230a [65], SLY4 [66],
SkMP [67], SKOp [68], KDE0V1 [69], SK255, SK272
[70], Rs [71], BSk20, BSk21 [72], BSk22, BSk23, BSk24,
and BSk25 [73].
The EOS for the outer crust region is taken to be the one

obtained by Baym-Pethick-Sutherland [74]. The EOSs for
the inner crust in the case of RMF models are determined
within a Thomas-Fermi approach up to the crust-core
transition density. In the case of SHF models, the EOSs
for the inner crust are constructed with the compressible
liquid-drop model [75,76]. These unified EOSs models
closely reproduce the properties of finite nuclei, nuclear
matter and neutron stars [53,55,76]. Moreover, these EOSs
are causal [77] and support a 2.0 M⊙ star [78]. All of the
employed unified EOSs are for npeμ matter, and apply
from the neutron star crust to its core.
The SHF and RMF EOSs used are displayed in terms of

their pressure-energy density relations in Fig. 1. The inset
in this figure contrasts the SHF and RMF EOSs with the
chiral EFT results of Ref. [34] up to 2ρ0. Note that many
SHF EOSs lie within the 2σ error estimates of the chiral

EFT results, several RMF EOSs fall outside these limits.
Such EOSs are nevertheless included in our analyses for the
sake of comparison and completeness.
The behavior of EOS is often understood in terms of

various nuclear matter parameters for a given EOS. The
lower order nuclear matter parameters, govern the behavior
of EOS at lower densities, are strongly correlated with
several bulk properties of finite nuclei. The higher order
nuclear matter parameters are expected to be correlated
with the bulk properties of NS. These parameters are
evaluated as follows. For densities up to 2ρ0-3ρ0 and for
neutron-proton asymmetry δ¼ ρn−ρp

ρ ;ðρ¼ρnþρpÞ, where
ρn and ρp are the neutron and proton densities, respectively,
the energy per nucleon as a function of density ρ and
asymmetry δ can be expressed as,

eðρ; δÞ ¼ esnmðρÞ þ esymðρÞδ2 þOðδ4Þ; ð27Þ

esnmðρÞ ¼ e0 þ
K0

2
x2 þQ0

6
x3 þOðx4Þ ð28Þ

esymðρÞ ¼ J0 þ L0xþ
Ksym;0

2
x2 þOðx3Þ; ð29Þ

where x ¼ ðρ−ρ0
3ρ0

Þ. The binding energy e0, incompressibility
K0, and the skewness coefficient Q0 can be determined
from the energy per nucleon for the symmetric nuclear
matter esnmðρÞ. Likewise, the symmetry energy coefficient
J0, its slope L0 and the curvature Ksym;0 of the symmetry
energy can be determined from esymðρÞ. All the parameters
appearing in the right hand side of Eqs. (28) and (29) are
evaluated at the saturation density ρ0. Once a functional
form for eðρ; δÞ is known, the EOS for the β-equilibrated
matter for near-nuclear densities can be obtained by adding

FIG. 1. Pressure versus energy density for a representative set
of EOSs corresponding to the SHF (red solid) and RMF (blue
dashed) models considered in the present work. The orange
region in the inset shows results for the chiral EFT� 1σ and�2σ
bounds up to twice saturation density [34].
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the ideal gas contributions from electrons and muons so
that the conditions of chemical equilibrium and charge
neutrality are satisfied.
The parametrization in Eqs. (27)–(29) is valid only for

densities such that x ≪ 1. These equations are employed
here only to define the nuclear matter parameters. In
constructing EOSs relevant for NS structure, the full
equations from the various SHF and RMF models consid-
ered here have been used.

IV. RESULTS AND DISCUSSION

The values of the EOS parameters at saturation density
show a diverse behavior across the models [76]. In the
present study, we shall investigate the correlations between
the NS observables and saturation properties of matter
expressed via parameters such as K0, Q0, L0 and Ksym;0.
We shall also consider the correlations of NS properties
with the pressure of β-equilibrated matter at densities in the
range 1.0–2.5ρ0.

A. Masses and radii of neutron stars

Figure 2 shows mass-radius curves obtained by solving
the TOV equations in general relativity [79,80] with the
various EOSs from SHF and RMF models used as input
data. Results for the SHF models are shown by red lines,
whereas, those from the RMF models are in blue dashed
lines. The mass of a NS increases with increasing central
density up to the maximum mass. The “x” s marked on the
curves indicate the maximum masses of the various EOSs

shown in Fig. 1. The orange region shows results of the
chiral EFT calculations up to the maximum mass such
EOSs can support. Note that without any extrapolation of
the chiral EFT EOS beyond 2ρ0, the maximum mass falls
well below even the canonical value of 1.4 M⊙.
In Fig. 2, we have also shown the observational data and

confirmed that all the SHF and RMF EOSs considered in
this work could predict stars ≥2 M⊙. The lower boxes
show the constraint on the mass and radius from the
Neutron star Interior Composition Explorer (NICER) data
of PSR J0030þ 0451. From the data analysis of this NS,
Miller et al. reported that the mass-radius of the pulsar
therein asM ¼ 1.44þ0.15

−0.14 M⊙ and R ¼ 13.02þ1.24
−1.06 km [81],

whereas Riley et al. gave it as M ¼ 1.34þ0.15
−0.16 M⊙ and R ¼

12.71þ1.14
−1.19 km [82]. Cromartie et al. [85] and Antoniadis

et al. [78] used radio observations from PSR J0740þ 6620

to determine the NS mass as M ¼ 2.14þ0.1
−0.09 M⊙ and

M ¼ 2.01� 0.04 M⊙, respectively. The model-averaged
estimate of the mass of this pulsar by Fonseca et al. [83]
gives the lower limit for the maximum mass of the NS
as 2.08þ0.07

−0.07 M⊙. With NICER and X-ray Multi-Mirror
(XMM-Newton) observations of the same pulsar, Miller
et al. and Riley et al. infer the radius as R ¼ 13.7þ2.6

−1.5 km
[84] and R ¼ 12.39þ1.30

−0.98 km [86], respectively.

B. f -mode and tidal deformabilities of a neutron star

The historical event of the binary neutron star merger
(BNS), GW170817, started a new era in multi-messenger
astronomy. This event gave important information about
the tidal deformability of a NS. The later stage of the
inspiring phase of the NS-NS merger creates a strong
gravitational field, which deforms a NS’s multipolar
structure. This is quantified by the dimensionless tidal
deformability parameter,

Λ ¼ 2

3
k2C−5; ð30Þ

where, k2, is the tidal Love number [87,88]. As k2 ∝ R=M,
Λ varies as the sixth power of R [77,89]. The tidal
deformability of canonical neutron star Λ1.4 ¼ 190þ390

−120 is
extracted from the combined tidal deformability of binary
neutron stars [90]. It is interesting to know how the tidal
deformability helps constrain the f-mode oscillations,
thereby inferring the properties and underlying EOS
through an inverse approach. Figure 3 shows the dimen-
sionless tidal deformability Λ as a function of f-mode
frequency obtained by varying the central density of the
star. The later quantity is obtained within the Cowling
approximation. Our results demonstrate that the tidal
deformability has a strong dependence on f-mode fre-
quency. Both the quantities f-mode and Λ are anticorre-
lated to each other.

FIG. 2. The NS mass-radius relationships obtained for the
EOSs for SHF and RMF models as shown in Fig. 1. The RMF
models give higher masses than SHF models. The lower boxes at
slightly different central masses show the constraints on mass and
radius from NICER (2019) data of PSR J0030þ 0451 [81,82].
The upper horizontal bands at the same central mass (bands
shifted for clarity) show the NICER data with x-ray multimirror
(NICER XMM-Newton 2021) observations of PSR J0740þ
6620 [83,84]. The orange region shows results for the chiral
EFT�1σ and �2σ bounds up to twice saturation density [34].
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In Newtonian physics, the f-mode frequency is related to
the stellar average density M=R3 [91,92]. In Fig. 4, nor-
malized eigenvalues with average density ωðR3=MÞ1=2, as a
function of NS mass for each SHF and RMF EOSs are
plotted. We see that results for most of the EOSs roughly
preserve the scaling relation 1.1≲ ωðR3=MÞ1=2 ≲ 1.6 for
M > 1 M⊙, which is comparable to results for the Tolman
VII (1.155) and Buchdal (1.237) EOSs, and larger than the
incompressible EOS (0.894) [3]. Furthermore, it is interest-
ing to notice that the normalized eigenvalues with the
average density of f-modes are independent of the adopted
EOSs. Therefore, it is not easy to distinguish the EOSs with
the help of observation of stellar properties [93].
Table I summarizes results of the essential NS properties:

canonical and maximum masses (inM⊙), their correspond-
ing radii R (in km), the dimensionless tidal deformabilityΛ,

compactness C, f-mode frequency (in kHz) and its damp-
ing time for QNMs.

C. Pearson’s correlation coefficients

Linear correlations between any given pair of quantities
is measured by Pearson’s correlation coefficient defined
as [94]

rða; bÞ ¼ σabffiffiffiffiffiffiffiffiffiffiffiffiffi
σaaσbb

p ð31Þ

with the covariance, σab, given by

σab ¼
1

Nm

X
i

aibi −
�

1

Nm

X
i

ai

��
1

Nm

X
i

bi

�
; ð32Þ

where the index i runs over the number of models Nm [95].
In what follows, ai and bi correspond to the NS properties
for a fixed mass obtained for the different models. A
correlation coefficient close to unity in absolute value
indicates a strong linear relation between the pair of
quantities that are considered.
We present the correlation matrices as heat maps in

Figs. 5(a) and 5(b) for NS properties, nuclear matter
properties, and pressure for beta-equilibrated matter. The
NS properties considered are the f- and p1-mode frequen-
cies, radii, and tidal deformability at fixed masses. For
comparison, the f- and p1-mode frequencies obtained with
the Cowling approximation and full GR are also shown.
The inferences for Cowling approximation as shown in
Fig. 5(a) are as follows:
(1) The p-mode frequency for a NS with 1.4 M⊙ is

strongly correlated with L0. The radius, tidal de-
formality and f-mode frequency for a NS with
1.4 M⊙ are moderately correlated with L0 and
Ksym;0 [77,96]. consideration.

(2) The beta-equilibrated matter pressure corresponding
to two times the saturation density has a substantial
correlation with f1.4, whereas the correlation be-
comes marginally stronger at higher masses; and

(3) The f-mode frequency also strongly correlates with
the corresponding tidal deformability and radius
[97]. However, the p1-mode frequency is only
moderately correlated with tidal deformability, but
displays a strong correlation with the slope L0 of
symmetry energy curve.

A similar analysis is made for f- and p1-mode values
obtained by the full GR approach as shown in Fig. 5(b).
The damping time that appears only in full GR is correlated
with various quantities associated with the EOS in the
following manner:
(1) The damping time τf1.4 is strongly correlated with

beta-equilibrated matter pressure at 2ρ0, R1.4, and
Λ1.4; and

FIG. 3. The Cowling f-mode frequency versus the tidal
deformability parameter for the NSs obtained by varying the
central density. The crosses on the curves indicate maximum
mass configurations with the unstable branches extending toward
the left.

FIG. 4. Normalized Cowling f-mode frequency versus NS
mass.

IMPACT OF THE EQUATION OF STATE ON f- AND p- … PHYS. REV. D 106, 063005 (2022)

063005-7



(2) The damping time τp1

1.4 is moderately correlated with
beta-equilibrated matter pressure at 2.5ρ0, and Q0.

D. Correlations involving pressure

The analysis of GW170817 has provided pivotal informa-
tion about the tidal deformability andpressure as a function of
density [98]. The behavior of the pressure at twice nuclear
saturation density is measured at 21.84þ16.85

−10.61 MeV fm−3 at
the 90% confidence limit [98]. In Fig. 6 we plot the f1.4,Λ1.4,
and R1.4 for NS with 1.4 M⊙ mass versus pressure at 2ρ0 for
the sets of SHF (red stars) and RMF (blue stars) models
considered. The thick solid gray line in the figure is obtained
by linear regression and the correlation coefficients are
displayed for each case considered. The expressions obtained

by fitting the variation of pressurePð2ρ0Þwith NS properties
using linear regression are:

Pð2ρ0Þ
MeV fm−3 ¼ 83.24 − 27.35

f1.4
kHz

ð33Þ

Pð2ρ0Þ
MeV fm−3 ¼ 12.87þ 0.02Λ1.4 ð34Þ

Pð2ρ0Þ
MeV fm−3 ¼ −52.27þ 6.02

R1.4
km

ð35Þ

From the heat map Fig. 5(a), we noticed that the
correlations between the f-mode and pressure Pðρ0Þ of
beta-equilibrated matter decrease with the increasing

TABLE I. Values of neutron star properties: maximum mass (M⊙), radius at the maximum mass Rmax (km) and radius at the canonical
mass R1.4 (km), compactness parameter C1.4 and the dimensionless tidal deformability for canonical mass, Λ1.4. The values of the
f-mode and p1-mode frequencies (kHz) are obtained by using the Cowling approximation and a full general relativistic treatment for the
EOSs considered in this work. The values of damping time τ1.4 (s) are also listed.

Cowling approximation General relativity

EOS Mmax Rmax R1.4 C1.4 Λ1.4 fmax f1.4 νp1

1.4 fmax f1.4 τf1.4 νp1

1.4 τp1

1.4

SKa 2.208 10.853 12.906 0.160 568.694 2.670 2.114 5.867 2.382 1.684 0.251 5.391 4.666
SKb 2.188 10.621 12.198 0.169 474.683 2.702 2.212 6.551 2.415 1.752 0.232 6.006 5.626
SkI2 2.163 11.047 13.474 0.153 775.670 2.639 1.976 5.449 2.352 1.572 0.289 4.964 4.401
SkI3 2.240 11.241 13.545 0.153 789.865 2.586 1.979 5.613 2.302 1.565 0.291 5.140 5.354
SkI4 2.169 10.639 12.363 0.167 472.443 2.713 2.212 6.503 2.415 1.754 0.232 5.973 5.514
SkI5 2.240 11.499 14.074 0.147 1000.071 2.537 1.868 5.184 2.282 1.478 0.328 4.718 4.909
SkI6 2.190 10.717 12.481 0.166 490.162 2.694 2.192 6.443 2.397 1.737 0.236 5.923 5.657
SLY2 2.053 10.082 11.773 0.176 310.385 2.877 2.388 6.783 2.578 1.916 0.195 6.243 4.245
SLY230a 2.099 10.209 11.822 0.175 332.692 2.831 2.371 6.960 2.513 1.892 0.200 6.418 5.187
SLY4 2.050 10.050 11.694 0.177 299.732 2.884 2.406 6.861 2.591 1.931 0.192 6.314 4.273
SLY9 2.156 10.630 12.457 0.166 453.543 2.728 2.223 6.351 2.436 1.770 0.227 5.852 4.984
SkMP 2.107 10.522 12.487 0.166 482.124 2.758 2.183 6.051 2.467 1.747 0.234 5.536 4.068
SKOp 1.973 10.152 12.116 0.171 363.930 2.884 2.294 6.163 2.587 1.855 0.208 5.633 3.160
KDE0v1 1.969 9.866 11.615 0.178 266.465 2.961 2.444 6.712 2.664 1.978 0.184 6.169 3.406
SK255 2.144 10.774 13.135 0.157 589.750 2.710 2.082 5.519 2.413 1.670 0.256 5.059 3.787
SK272 2.231 11.006 13.304 0.155 647.483 2.641 2.052 5.550 2.351 1.637 0.266 5.103 4.480
Rs 2.116 10.796 12.921 0.160 594.582 2.698 2.084 5.697 2.424 1.667 0.257 5.195 3.942
BSk20 2.165 10.288 11.719 0.176 322.916 2.790 2.389 7.081 2.506 1.904 0.198 6.536 5.560
BSk21 2.278 11.080 12.539 0.165 520.829 2.599 2.189 6.787 2.314 1.719 0.241 6.282 8.148
BSk22 2.265 11.175 13.015 0.159 633.050 2.589 2.090 6.191 2.307 1.646 0.263 5.711 6.638
BSk23 2.271 11.136 12.799 0.162 576.473 2.593 2.135 6.459 2.307 1.678 0.253 5.968 7.295
BSk24 2.279 11.086 12.547 0.165 522.583 2.598 2.188 6.784 2.311 1.717 0.241 6.280 8.173
BSk25 2.224 11.072 12.344 0.167 485.592 2.609 2.228 7.135 2.314 1.744 0.234 6.613 9.451

BSR2 2.383 11.728 12.796 0.162 743.777 2.435 2.025 6.117 2.142 1.583 0.285 5.676 8.671
BSR6 2.430 11.946 13.229 0.156 825.331 2.401 1.966 5.425 2.117 1.551 0.297 5.027 6.546
GM1 2.361 11.884 13.680 0.151 909.926 2.435 1.931 5.618 2.159 1.516 0.311 5.158 6.727
NL3 2.774 13.245 14.601 0.142 1284.080 2.162 1.793 5.095 1.909 1.400 0.368 4.699 8.311
NL3ωρ03 2.753 12.994 13.722 0.151 948.459 2.193 1.953 6.167 1.935 1.504 0.316 5.833 16.933
TM1 2.179 12.384 14.249 0.145 1059.437 2.368 1.855 5.139 2.086 1.465 0.334 4.705 5.573
DD2 2.418 11.884 13.151 0.157 695.868 2.426 2.062 6.183 2.148 1.612 0.274 5.779 9.386
DDHδ 2.138 11.113 12.591 0.164 589.032 2.606 2.135 6.714 2.299 1.671 0.255 6.165 7.855
DDME2 2.483 12.053 13.190 0.157 715.231 2.385 2.058 6.293 2.106 1.601 0.278 5.923 11.674
IOPB-I 2.149 11.891 13.288 0.156 694.552 2.463 2.048 5.849 2.139 1.612 0.274 5.455 7.185
G3 1.997 10.986 12.586 0.164 465.918 2.679 2.208 6.178 2.369 1.760 0.230 5.724 4.817
FSUG 2.066 11.830 13.155 0.157 634.019 2.485 2.097 6.147 2.175 1.645 0.263 5.787 8.172
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neutron star mass and are not significantly strong to make a
meaningful statement. However, the correlations of f-mode
frequencies with Pð2ρ0Þ for beta-equilibrated matter are
quite strong (r ¼ −0.86 to −0.90). The correlations are
marginally higher for larger NS mass.
Figure 7 shows the frequency and damping time of

1.4 M⊙ star, which is obtained with full GR calculations
done for all EOSs considered in this work. We note that the
correlation between Pð2ρ0Þ and f1.4 is almost identical as
in the case of the Cowling approximation. Thus, we look
into the correlations of the damping time (imaginary part of
the eigenvalue) with the pressure Pð2ρ0Þ of beta-equili-
brated matter. The behavior is qualitatively similar to that
for Λ1.4 as shown in Fig. 6 exhibiting a strong correlations
between Pð2ρ0Þ and τ1.4. We have obtained following
expressions from linear regressions:

Pð2ρ0Þ
MeV fm−3 ¼ 79.10 − 32.09

fGR1.4
kHz

ð36Þ

Pð2ρ0Þ
MeV fm−3 ¼ −2.41þ 106.93

τf1.4
sec

: ð37Þ

Finally, in Fig. 8, we plot the frequency of p1-mode
versus pressure at saturation density and slope of the

(a) (b)

FIG. 5. Heat map depicting the correlation of nuclear matter parameters to neutron star properties. The f- and p1-mode frequencies are
obtained within (a) the Cowling approximation and (b) full GR.

FIG. 6. Pressure at twice the saturation density plotted against f-mode frequency in Cowling approximation, tidal deformability and
radius calculated for 1.4 M⊙ neutron star using SHF and RMF models. The thick solid gray line gives the best fit. Values of Pearson’s
coefficient r are as indicated.

FIG. 7. Same as Fig 6, but, for the f-mode frequency and
damping time within full GR. Values of Pearson’s coefficient r
are as indicated.
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symmetry energy L0 for our representative sets of SHF and
RMF models. It is interesting to note that the νp1

1.4 − L0

correlation is stronger than the f1.4 − L0 correlation.
Similar trends are observed for the cases of νp1

1.4 − Pðρ0Þ
and f1.4 − Pðρ0Þ correlations [see Figs. 5(a) and 5(b)].
These correlations indicate that the p1-mode frequency is
more sensitive to the isovector EOS parameters L0 and
pressure at saturation density. The correlations involving
p1-mode frequency take the form

νp1

1.4

kHz
¼ 7.12 − 0.02

L0

MeV
ð38Þ

νp1

1.4

kHz
¼ 7.43 − 0.58

Pðρ0Þ
MeV fm−3 : ð39Þ

In summary, we notice from the various correlations that
the information containing the f- and p1-mode frequencies
are complementary. These modes probe different density
regions of the NS. The f-mode frequency is more sensitive
to the region at 2ρ0, and the p1-mode frequency is more
sensitive to the region of the NS in the vicinity of the outer
core. The reason for this is that the p1-mode oscillation
peaks stronger at the stellar surface than the f-mode,
see Fig. 13.

V. CRITICAL ANALYSIS OF CORRELATIONS

Correlations ofR1.4 andΛ1.4 withL0 andKsym;0 have also
been reported in several earlier investigations [97,99–103].
The EOSs employed in these studies range from non-
parametric [102], parametric [100], and physics-based
models [96,101]. While in some cases, constraints imposed
by bulk nuclear properties have been used [96,100,101],
other cases have also imposed those provided by the bulk
properties of nuclei through the constraints on nuclear
matter parameters assuming them to be independent of each
other. The sample sizes used in these works also differ.
In what follows, we first explore the dependence on the

sample sizes for the EOSs used in our work, and thereafter
recount the main findings in the above mentioned studies.

A. Dependence on the sample sizes

The correlation systematics, up to a large extent, is also
driven by the selection criteria of models. Even not too
large a number of models but having diverse behavior,
if randomly selected, may serve the purpose[104]. The
various models obtained by systematically varying one or
few of the base model introduces a strong bias and usually
result in large correlations under consideration.
We investigate how the selection of EOSs affects the

correlations of Λ1.4 and R1.4 with L0 and Ksym;0. For this
purpose, sets of 10, 20, and 30 EOS randomly selected
from our pool of 35 EOSs corresponding to the SHF and
RMF models are constructed. The distribution of correla-
tion coefficients are studied using 1500 such samples. In
Fig. 9, results obtained for sets of 20 EOSs are displayed.
The mean and standard deviations for the distributions of
correlation coefficients corresponding to different number
of EOS models are presented in Table II. The standard
deviations are found to decrease with increase in number of
EOSs in a sample, but the mean values show only marginal
changes.

FIG. 8. The p1-mode frequency νp11.4 versus symmetry energy
slope parameter L0 and pressure at saturation density obtained for
NS mass 1.4 M⊙ within full GR. Values of Pearson’s coefficient r
are as indicated.

FIG. 9. The distributions of correlation coefficients for Λ1.4
with L0 and Ksym;0 obtained using 1500 samples. Each sample
consists of a set of 20 models selected randomly from the pool of
35 SHF and RMF models considered in the previous section. The
dashed red vertical line indicates the mean value.
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The distributions of correlation coefficients for the
correlations of L0 and Ksym;0 with the pressures Pð2

3
ρ0Þ

and Pð2ρ0Þ are also subjected to a similar analysis. The
trend for Ksym;0 − P correlations is opposite to that
obtained for the L0 − P correlations. The Ksym;0 is better
correlated with Pð2ρ0Þ than with Pð2

3
ρ0Þ since as the

density increases, the contribution to the pressure from
the Ksym;0 increases faster compared to the ones for L0.

B. Correlation findings in earlier works

The correlations of various NS properties with nuclear
matter parameters were studied using large set of RMF
models in Ref. [97]. The coupling constants that appear in
the effective Lagrangian were determined from various
nuclear matter parameters. Values of these nuclear matter
parameters were drawn from uniform distributions with
their ranges guided by available data on finite nuclei
assuming them to be uncorrelated with each other. The
correlations of R1.4 and Λ1.4 with L0 were found to be very
weak. A similar investigation performed in Ref. [99] using
metamodels [104] also yielded weak correlations of the
combined tidal deformability Λ̃ with L0. However, the
correlations of Λ̃ with Ksym;0 was stronger than those with
L0. The values of Λ̃ are expected to be strongly correlated
with Λ1.4 [105,106]. The Λ1.4 in Ref. [100] was found to be
moderately sensitive to the L0 and Ksym;0 within a meta-
model. The nuclear matter parameters in Ref. [100] were
considered to have Gaussian distributions with the mean
and standard deviations obtained by combining the results
from the SHF and RMF models fitted to some selected
properties of finite nuclei. The parameters were further
constrained using current estimates for Λ1.4 ¼ 190þ390

−120 that
led to very weak correlations in the values of L0 and Ksym;0.
Reference [103] presented an interesting study on the
correlations of R1.4 with L0 and Ksym;0 obtained by

combining the impact of PREX-II and Radio/NICER/
XMM-Newton’s mass-radius measurement of PSR
J0740þ 6620 on the dense matter EOS. The EOSs
employed in Ref. [103] were obtained using Taylor
expansion up to 1.25ρ0 and piece wise polytrope (PP)
were used at higher densities. It was shown that the R1.4-L0

correlations somewhat improves with the increase in
the L0-Ksym;0 correlations which is enforced by demanding
higher accuracy in the neutron-skin measurement of
PREX-II for the 208Pb nucleus. The strong correlations
of Λ1.4 with L0 reported in Refs. [96,107] for the SHF
models stem from the model parameters informed by
the bulk properties of finite nuclei. Similar conclusions
were drawn for the RMF models fitted to data on finite
nuclei [101].
The outcomes described above are summarized in

Table III for the sake of convenience. It seems that the
correlations of R1.4 and Λ1.4 with various symmetry energy
parameters are sensitive to the joint distribution of the
nuclear matter parameters that enter into the investigation.
The nuclear matter parameters drawn from uncorrelated
uniform distributions tend to yield weaker correlation of
R1.4 and Λ1.4 with L0 and Ksym;0. On the other extreme,
models fitted to finite nuclei yield stronger correlations.
The bulk properties of finite nuclei not only constrain the
values of few low order nuclear matter parameters, but also
introduce the correlations among them [96]. For instance,
the values of isoscalar giant monopole resonance energies
impose stringent constraints on the slope of incompress-
ibility coefficient at crossing density (∼0.7ρ0) that can be
expressed in terms of K0 and Q0 [108,109]. The correla-
tions between L0 and Ksym;0 have also been extensively
studied using mean field models such as SHF and RMF
[110–112] and these correlations were found to be strong.

TABLE II. The mean and standard deviations for the distribu-
tions of correlation coefficients for Λ1.4 and R1.4 with L0 and
Ksym;0 obtained with ensembles of 10, 20, and 30 models. Results
for the correlations of L0 and Ksym;0 with Pð2

3
ρ0Þ and Pð2ρ0Þ are

also presented.

Number of EOSs

10 20 30

Λ1.4 L0 0.7� 0.18 0.73� 0.09 0.74� 0.04
Ksym;0 0.73� 0.15 0.74� 0.07 0.74� 0.03

R1.4 L0 0.76� 0.15 0.78� 0.07 0.78� 0.03
Ksym;0 0.71� 0.17 0.73� 0.08 0.74� 0.04

L0 Pð2
3
ρ0Þ 0.94� 0.04 0.94� 0.02 0.94� 0.01

Pð2ρ0Þ 0.61� 0.22 0.62� 0.12 0.62� 0.06

Ksym;0 Pð2
3
ρ0Þ 0.34� 0.36 0.38� 0.19 0.39� 0.09

Pð2ρ0Þ 0.74� 0.15 0.73� 0.08 0.73� 0.04

TABLE III. Overview of the correlations of R1.4 and Λ1.4 with
the symmetry energy parameters L0 and Ksym;0 obtained using
different models. The model parameters are determined either in
terms of the nuclear matter parameters or by fitting directly some
selected properties of finite nuclei. The nuclear matter parameters
are assumed to have uniform (U), Gaussian (G) or Hybrid (H)
distributions. Furthermore, these parameters may be uncorrelated
(Unc) or correlated (Cor); see the text for details. The ‘W’, ‘M’,
and ‘S’ denote the weak (r ≤ 0.5), moderate (0.5 < r ≤ 0.75),
and strong (r ≥ 0.75), correlations.

Model Distribution NMPs L0 Ksym;0 References

RMF U-Unc W … [97]
Metamodel U-Unc W S [99]
Metamodel G-Unc M M [100]
Taylor þ PP H-Unc W W [103]
SHF G-Unc M M [96]
SHF G-Cor S S [96]
SHF Finite nuclei S S [107]
RMF Finite nuclei S S [101]
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The existence of universal correlations among various
symmetry energy parameters J0, L0 and Ksym;0 which
are independent of the details of the nuclear forces used in
the calculation has been demonstrated [113]. Given the
above conflicting findings in the literature, it appears that
the dependence of R1.4 and Λ1.4 on L0 and other higher
order nuclear matter parameters are not yet conclusive.
Detailed analysis must be done in this regard for arriving at
some meaningful conclusions.

VI. DAMPING TIMES OF QNMS
IN GENERAL RELATIVITY

We have computed the damping time of the f-modes
constructed from the EOSs of RMF and SHF models. The
dependence of the damping time on the NS mass is shown
in Fig. 10. For a typical NS, the frequency of the f-mode
is around 1–3 kHz, whereas their damping times τf can
be a few tenths of a seconds [1]. The damping time
decreases as the neutron star mass increases. The variation
of the curves shows the nature of the softer and stiffest
EOSs, which can be understood from Table I. For
example, the soft EOS, such as G3, has the shortest
damping time, 0.230 s, and the highest f-mode frequency,
1.760 kHz of 1.4 M⊙. The nature of a short damping time
would be to enable sizeable emission of gravitational
radiation [114,115].
Figure 11 shows the imaginary part of the eigenfre-

quency (inverse damping time) of the p1-mode. We found
the damping times of the p1-mode τp1 is significantly
longer than that of the f-mode τf. The damping times are
sensitive to the structure of neutron stars and are smallest
for stars slightly lower than the maximum mass configu-
rations. Results for 1.4 M⊙ stars can also be seen in the
rightmost column of Table I.

A. Accuracy of the Cowling approximation

The frequencies calculated by the Cowling approxima-
tion and full GR show significant differences although their
qualitative trends are similar. For the l ¼ 2 modes con-
sidered, We calculate the relative error in the f-mode
frequencies using

jfCow − fGRj
fGR

ð40Þ

Similar calculation has done in case of p1-mode as
depicted in Fig. 12(b). The Cowling approximation has an
error of around 15–30% for f-mode frequencies as shown
in Fig. 12(a). The error exhibits a linear trend with
increasing mass with a more rapid variation occurring as
the maximum is reached. These features were also noted in
[116,117].
The f-mode oscillations have fluid perturbations (W and

V) that peak near the stellar surface, whereas the metric
perturbations (H0, H1 and K) peak close to the stellar
center; see top two panels in Fig. 13. The Cowling
approximation neglects metric perturbations which intro-
duce a smaller error in NSs with higher mass, as massive
NSs have a stronger fluid perturbation peak at the stellar
surface and couples weakly to the metric perturbation at the
stellar center. Fluid perturbations of the p1-mode have a
radial node within the NS; see the bottom two panels in
Fig. 13. Also, the fluid perturbation is much weaker at the
stellar center which results in a much higher peak at the
stellar surface. As a result, the p1-mode oscillation fre-
quency calculated by the Cowling approximation has an
error of around 10%, less than the error in the f-mode
frequency. However, unlike for the f-mode, fluid pertur-
bations peak at the stellar surface the more massive NSs
exhibiting a higher peak than stars of lesser mass.
Therefore, the error in the Cowling approximation for

FIG. 10. Variation of the damping time for f-mode oscillations
versus neutron star mass.

FIG. 11. Variation of the imaginary part ω of p1-mode
oscillations (inverse damping time) versus neutron star mass.
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p1-modes increases with increasing mass. Since the
p-modes with more radial nodes generally have weak
fluid perturbations in the stellar center, the accuracy of
the Cowling approximation increases with the order of the
mode [118]. Therefore, the error of the Cowling approxi-
mation in p-modes of any order is less than 15%, which

corresponds to p1-mode for stable NS with maximum
mass.
Since the f-mode frequency can be estimated by the

1%-accurate universal relations between the f-mode fre-
quency versus tidal deformability and versus momentum of
inertia [3,20], the 30% error of the Cowling approximation

(a) (b)

FIG. 12. Relative deviations of the (a) f- and (b) p1-mode frequencies obtained using the Cowling approximation with those for
full GR.

FIG. 13. Fluid and metric perturbation (real part) amplitude profiles of f-mode (top panels) and p1-mode (bottom panels) oscillations
for a NS with 1 M⊙ (left panels) and Mmax (right panels). W and V are dimensionless, H0, H1 and K are in units of
εs ¼ 152.26 MeV fm−3, and X is in units of ε2s . While the SLY4 EOS is used as an example in this figure, all EOSs have qualitatively
similar behavior.
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is unacceptable. Due to the lack of such a tight universal
relation for p-modes, a 15% error from the Cowling
approximation is regarded as tolerable for explorative
purposes. For example, the Cowling approximation can
greatly simplify the equations especially in nonlinear full
GR simulations [119,120].

VII. SUMMARY AND CONCLUSIONS

We have used a representative set of EOSs from non-
relativistic and relativistic mean-field models to explore the
possibility of strong correlations of f-mode, p1-mode
frequencies and damping time with the properties of
nuclear matter and neutron stars. Most of the EOSs are
consistent with that for the chiral EFT model upto 2ρ0. Our
chosen EOSs also satisfy experimental data on the bulk
properties of finite nuclei and are also compatible with the
various properties of NS observables such as maximum
mass, radius, and tidal deformability. For our correlation
systematics, the values of nuclear matter incompressibility
K0, skewness parameter Q0 for symmetric nuclear matter,
and the slope of the symmetry energy coefficients L0 as
well as pressure for the β-equilibrated matter in the range of
ρ0 − 2.5ρ0 are employed. We also present a critical analysis
of the correlations of nuclear matter parameters, such as
aspects of the density-dependent symmetry energy, with the
tidal deformability The differences in the f- and p1-mode
frequencies calculated using full GR and the Cowling
approximation are also studied.
Our principal findings are as follow. The f-mode

frequencies corresponding to NS masses in the range
1.2–1.8 M⊙ are strongly correlated with the radius and
tidal deformability of a 1.4 M⊙ neutron star. The pressure
at 2ρ0 for β-equilibrated matter is also strongly correlated
with the f-mode frequencies. This correlation grows
marginally with increase in the NS mass. The L0 is found
to be moderately correlated with f-mode frequencies
whereas it decreases with increasing NS mass. The trends
of the correlations for the f-mode frequencies obtained
with the Cowling approximation and full GR are quite
similar.
The frequency of the p1-mode for a NS with mass

1.4 M⊙ is strongly correlated with L0 and pressure at ρ0.

However, the correlation significantly decreases with pres-
sure at higher densities. This can be understood as being
due to the p-mode oscillation peaking stronger at the stellar
surface than the f-mode, see Fig. 13. The correlation of the
p1-mode frequency with the canonical radius and tidal
deformability are weaker than those for the f-mode
frequency. These results imply that the f- and p1-mode
frequencies are sensitive to the behavior of EOS at different
densities.
The correlation of the damping time for f-mode exhibits

the same behavior as those for the f-mode frequencies.
However, the damping time for the p1-mode displays
opposite trends. For instance, the damping time for the
p1-mode is only weakly correlated with L0 and pressure for
β-equilibrated matter at saturation density ρ0.
Our examination of the accuracy and its mass depend-

ence of the Cowling approximation reveals that the error in
the f-mode frequency decreases from about 30% for a
1 M⊙ NS to about 15% for a NS with the highest mass,
which is consistent with previous calculations [3,97].
Recently, calculation of the Newtonian Kelvin frequency
has been shown to be a simpler and more accurate
approximation than the Cowling approximation [3].
However, the Cowling approximation gives reasonable
results for the p1-modewith errors≲15%. Unlike nonlinear
simulation of the f-mode oscillation which requires full GR
[119,120], numerical simulation of the p1-mode could be
simplified with the Cowling approximation, which is
sufficiently accurate for most purposes.
Our work here has concentrated on NS matter in

which the strongly interacting components are nucleons
only. In work to follow, we will be considering the possible
presence of quarks treated via the Gibbs construction and
the case in which a nucleon-to-quark crossover transition
occurs.
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