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Within the relativistic mean-field model, we investigate the properties of dark matter (DM) admixed neutron
stars, considering non-rotating objects made of isotropic matter. We adopt the IOPB-I hadronic equation of state
(EOS) by assuming that the fermionic DM within super-symmetric models has already been accreted inside the
neutron star (NS). The impact of DM on the mass-radius relationships and the radial oscillations of pulsating DM
admixed neutron stars (with and without the crust) are explored. It is observed that the presence of DM softens
the EOS, which in turn lowers the maximum mass and its corresponding radius. Moreover, adding DM results
in higher frequencies of pulsating objects and hence we show the linearity of fundamental mode frequency of
canonical NS with DM Fermi momentum. We also investigate the profile of eigenfunctions solving the Sturm-
Liouville boundary value problem, and verify its validity. Further, we study the stability of NSs considering the
fundamental mode frequency variation with the mass of the star, and verify the stability criterion ∂M/∂ρc > 0.
Finally, the effect of the crust on the large frequency separation for different DM Fermi momenta is shown as
well.

I. INTRODUCTION

Neutron star (NS) is one of the mysterious stellar leftovers,
having an enormously dense core and a robust crust. The coa-
lescence of binary NS (BNS) merger events produce gravita-
tional waves (GWs) that encode sufficient knowledge to place
substantial restrictions on the equation of state (EOS) and the
internal compositions of NSs [1–11]. In the future, terrestrial
detectors, such as LIGO/Virgo/KAGRA, could be able to ob-
serve more BNS merger events, which could more precisely
restrict the properties of compact stars. In addition to that, os-
cillating NSs also emit GWs with various mode frequencies
can be used to explore the internal compositions as well as the
various properties of the star [12, 13].

Oscillating NSs emit different modes frequencies, such as
f , p, g, etc. depending on the restoring force, after their for-
mation in the supernovae. There are various processes, such
as dynamical instability, mass accretion, magnetic configu-
ration, and fractures in the crust, that may be the different
sources of oscillations [14–17]. Oscillations are mainly cat-
egorized into two types, namely radial and non-radial. In this
study, we propose to explore various properties of radial oscil-
lations of NSs. Several works have already been published on
the exploration of different properties of radially oscillating
NS [18–25]. Within the framework of General Relativity, ra-
dial oscillations have been investigated as the simplest mode
of NSs [18–24]. Later, other numerical techniques incorpo-
rated zero temperature EOS to correct their numerical results
[20, 25]. According to their findings, oscillations become un-
stable once the NS reaches its maximum mass at the corre-
sponding central density. The detection of radial oscillations
is quite complex, as they cannot generate GWs on their own.
They are coupled with non-radial oscillations, making GWs
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stronger and making it more likely that they can be detected
[26, 27]. However, in Ref. [28], it has been observed that in
the post-merger event of BNS, a hyper-massive NS is formed
along with the emission of a short gamma-ray burst (SGRB),
which may be impacted by radial oscillations. Therefore, in
this study, we want to explore more with the inclusion of dark
matter (DM) inside the oscillating NS since DM effects pro-
duce an extra peak in the post-merger spectrum [29].

Evidence for DM in galaxies may be inferred from a vari-
ety of data, including galaxies’ rotation curves, velocity dis-
persions, galaxy clusters, gravitational lensing, the cosmic mi-
crowave background, etc. According to the findings of cosmo-
logical observations, the unseen matter cannot be composed of
baryons; instead, it needs to be a new type of matter that only
has a very weak interaction with the other particles. How-
ever, substantial research on DM models introduced and an-
alyzed by particle physicists has led to the establishment of
stringent limits on the coupling constant as well as the mass
of the DM particle. The weakly interacting massive particle
(WIMP) scenario has gained popularity among DM models
since it is the most abundant DM candidate and the thermal
relic of the Universe. Therefore, in our model, we choose non-
annihilating WIMPs (Neutralino) as the DM candidate, which
is already accreted inside the NS [23, 30–34]. From various
observational data, one can put constraints on the amount of
DM inside the NS [31, 32]. Alternatively, Asteroseismology
is a widely used technique to probe the inner structure of stars.
By studying oscillations of pulsating objects and computing
the frequencies of their modes, we could learn more about the
EOS of interacting matter and internal composition since the
numerical values of the frequency modes are extremely sensi-
tive to the underlying physics.

To study NS properties, one needs the EOS, which dic-
tates the relationship between energy density and pressure.
Here, we take the Extended Relativistic Mean Field (E-RMF)
model, as explained in detail in Refs. [35, 36]. However, in
this study, we consider the IOPB-I EOS [36] to calculate var-
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ious properties of NSs. In the case of DM, we use the method
as discussed in sub-section II A. The final EOS is the addi-
tion of nucleons and DM. With that EOS, we investigate the
effects of DM on f and p-modes frequencies. Assuming non-
rotating NSs, we solve the Sturm-Liouville eigenvalue prob-
lem [37–39]. Our model is predicated on the assumption that
oscillations are characterized by a small magnitude, which al-
lows for the application of linear perturbation theory[40, 41].
Our work is organized as follows: we focus on the formal-
ism to obtain the EOS for DM admixed NS (DMANS) in Sec.
II A. We calculate the mass-radius relationships for a static,
isotropic, and non-rotating star, as discussed in Sec. II B. The
methodology for radial oscillation is enumerated in Sec. II C.
We discuss our numerical results in Sec. III, and finally, we
summarize our work in Sec. IV.

II. FORMALISM

A. Equation of state for the DM admixed NS

In this study, we use the extended relativistic mean field
(E-RMF) model EOS of the NS. Several works have already
used the E-RMF model and found that almost NS properties,
such as mass, radius, tidal deformability, the moment of in-
ertia, etc., are well reproduced and consistent with different
observational data [31, 33, 34, 36]. The details calculations
and the applications of E-RMF to NS can be found in [36].

Compact objects, such as NS, capture a finite amount of
DM in their evolution stage. After accretion, the DM particle
loses energy when interacting with neutrons because of the
high baryon density. The NS’s immense gravitational field
traps the DM after losing some energy [30, 42, 43]. Since
WIMPs are the most prevalent DM particle and the thermal
remnant, we choose non-annihilating WIMPs (Neutralino) as
DM candidates. Other phenomena enhance the density of DM
inside the NS, including converting neutrons to scalar DM and
generating scalar DM via bremsstrahlung [29, 30, 44]. The
history of NS’s formation and its habitat’s surroundings affect
how much DM is present.

The DM particle interacts with baryons by exchanging SM
Higgs.The form of the interacting Lagrangian is given by [23,
30–34, 45],

LDM = χ̄ [iγµ∂µ −Mχ + yh]χ+
1

2
∂µh∂

µh

−1

2
M2
hh

2 + f
Mnucl.

v
ϕ̄hϕ , (1)

where ϕ and χ are the nucleonic and DM wave functions, re-
spectively. h is the Higgs field. The masses Mχ and Mh are
the Neutralino mass and Higgs mass taken as 200 GeV and
125 GeV, respectively. The coupling constants between the
DM and SM Higgs is y, which can be obtained in the large
Higgs mixing angle limit. The various gauge coupling con-
stants are present in the electroweak sector of the standard
model [46] because the Neutralino is a super-symmetric par-
ticle. The values of y are given in the range between 0.001 to

0.1, depending on the various parameters [23, 30, 31]. There-
fore, we use y = 0.07 in our computations. fMnucl./v is the
effective Yukawa coupling between the Higgs field and nucle-
ons, where f is the proton-Higgs form factor. Its value can be
assumed to be approximately 0.35 [47], and v is the vacuum
expectation of Higgs taken as 246 GeV [31, 34].

Now the energy density and pressure for DM can be calcu-
lated by using the Eq. (1) given as [23, 31, 33],

EDM =
2

(2π)3

∫ kDM
f

0

d3k
√
k2 + (M?

χ)2 +
1

2
M2
hh

2
0 , (2)

PDM =
2

3(2π)3

∫ kDM
f

0

d3k k2√
k2 + (M?

χ)2
− 1

2
M2
hh

2
0 , (3)

where kDM
f is the DM Fermi momentum, and M∗χ(= Mχ −

yh0) is the DM effective mass. We assume that the DM den-
sity is ∼ 1000 times less than the baryon density inside NS
[23, 30]. From this assumption, one can calculate the DM
density. Hence, in our computations, we vary the value of
kDM
f from 0-0.05 GeV.
Therefore, for DMANS, the total energy density and pres-

sure can be written as [31, 34]

E = ENS + EDM ,

and P = PNS + PDM , (4)

where E = ENS, and P for NS with only nucleons can be
found in [31, 33].

Fig. 1 depicts the variation of pressure and energy density
by varying DM Fermi momenta. For the lower-density region,
we use the SLY4 crust to make the unified EOSs [48], which
can be used to study the frequencies of the radially oscillating
DM admixed NS. It is observed that the EOS becomes softer
with the addition of DM. The softening of the EOSs depends
on the amount of DM inside the NS.

Due to the fact that all systems strive to save energy, this is
the case. The Fermi momenta (kf ), also known as the Fermi
energy, becomes larger as the density rises. Since nucleons are
fermions, they must be assigned a higher orbit as the nuclear
density rises. The density is known to increase as the cube
of the Fermi momenta. The nucleon’s total energy, defined as
E =

√
k2f +M2 grows as the density of the nucleus rises.

The nucleons decay into these particles when their energy
level is greater than that of the DM. Therefore, even though
DM is heavier than nucleons, it is more energy efficient for the
system to have the DM in the lower-energy states instead of
nucleons at greater Fermi energy and at greater density. Ac-
cording to the density of the system, DM may substitute in
place of the nucleons. So, some of the gravitational mass is
turned into kinetic energy, which makes the total mass smaller.
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FIG. 1. Unified DM admixed EOSs for various Fermi momenta. The
kink shows the crust-core transitions.

B. Hydro-static Equilibrium Structure

In equilibrium, the metric tensor for a static and spherically
symmetric star is given by [49]

ds2 = −e2νc2dt2 + e2λdr2 + r2(dθ2 + sin2θdφ2) , (5)

where e2ν and e2λ are the metric functions.
To describe the hydrostatic equilibrium of NSs, Einstein’s

field equations in Schwarzschild-like coordinates imply the
Tolman-Oppenheimer-Volkoff (TOV) equations, which are
given by [50, 51]

dP

dr
= −Gm

c2r2

(P + E)
(

1 + 4πr3P
mc2

)
(
1− 2Gm

c2r

) ,

dν

dr
= − 1

P + E
dP

dr
,

dm

dr
=

4πr2E
c2

, (6)

and the corresponding metric functions at the surface, i.e., at
r = R

e2ν(R) = e−2λ(R) =

(
1− 2GM

c2R

)
. (7)

By using the initial conditions m(r = 0) = 0 and P (r =
0) = Pc, where Pc is the central pressure, here TOV equa-
tions can be solved for DMANS EOSs, and the integration
will continue up to surface boundary where m(r = R) = M
and P (r = R) = 0.

We plot the mass-radius relations for DM admixed NS by
solving the TOV equations for various Fermi momentum of
DM in Fig. 2. The magnitude of the maximum mass and
its corresponding radius decreases with increasing DM mo-
menta. For∼ kDM

f = 0.03 GeV, the M −R curves reproduce
the observational data well. The curves do not satisfy any
of the observational data with more percentages. Therefore,
from the observational data, one can fix the amount of DM
inside the NS.
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FIG. 2. Mass-Radius relations for DM admixed NS for IOPB-I EOS
with varying DM Fermi momentum. Different horizontal color bands
for various pulsars’ observational data and the simultaneous observa-
tions of mass-radius given by NICER are also shown.

C. Radial Oscillations of NSs

In order to analyze the equations driving radial oscillations
of NSs, first, we define δr(r, t) to be the time-dependent radial
displacement of a fluid element as

δr(r, t) = X(r)eiωt, (8)

whereX(r) is the amplitude and ω is the circular frequency of
the standing wave solution.The linearized perturbation equa-
tions can be expressed as a second-order homogeneous differ-
ential equation with the assumption of adiabatic oscillations
as

c2sX
′′ +

((
c2s
)′ − Z +

4πG

c4
rγPe2λ − ν′c2

)
X ′

+

[
2 (ν′)

2
c2 +

2Gm

r3
e2λ − Z ′ − 4πG

c4
(P + E)Zre2λ

]
X

+ ω2e2λ−2νX = 0,
(9)

where c2s is the sound of speed squared and γ is the adiabatic
index, of the forms

c2s =
dP

dE c
2 and γ =

(
1 +
E
P

)
c2s. (10)

Also,

Z(r) =

(
ν′ − 2

r

)
c2s. (11)

The oscillation equations should be such that there is no dis-
placement at the center, i.e

δr(r = 0) = 0 (12)

and the Lagrangian perturbation of pressure should vanish at
the surface,

∆P (r = R) = 0 (13)
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Owing to these boundary conditions, the displacement func-
tion can be redefined as,

ζ = r2e−νX . (14)

Using this new variable, Eq. (9) can be rewritten as a Sturm-
Liouville differential equation which has a self-adjoint nature
[25]

d

dr

(
H
dζ

dr

)
+
(
ω2W +Q

)
ζ = 0 , (15)

where

r2H = (P + E)eλ+3νc2s ,

r2W = (P + E)e3λ+ν ,

r2Q = (P + E)eλ+3ν

(
(ν′)2 +

4

r
ν′ − 8πG

c4
e2λP

)
. (16)

Eq. (15) is the master equation for radial oscillations such that
∆P takes a simple form

∆P = −r−2eν(P + E)c2sζ
′. (17)

Moreover, since Eq. (15) takes the Sturm-Liouville form,
where ζn has n nodes between the surface and the center with
discrete eigenvalues ω2

n. The eigenvalues follow

ω2
0 < ω2

1 < ... < ω2
n < ....

The standing wave solution, Eq. (8) also suggests that oscil-
lations will be harmonic and stable for real ω but the star will
become unstable with an imaginary frequency of the node.
Additionally, because the eigenvalues are arranged in the man-
ner described above, it is crucial to know the fundamental f -
mode frequency (n = 0) in order to determine the stability of
the star. ω0 becomes imaginary for a central density greater
than the critical density (ρcrit), which corresponds to the den-
sity at which NS attains its maximum mass. Above ρcrit, the
amplitude of oscillations becomes exponential, and the star
cannot return to its original configuration, finally collapsing
into a black hole.

The Eq. (15) is split into two first-order coupled linear dif-
ferential equations for numerical integration. To do this, we
create a new variable called η, where

η = Hζ ′. (18)

The coupled differential equation thus becomes [25]

dζ

dr
=

η

H
, (19)

dη

dr
= −

(
ω2W +Q

)
ζ. (20)

Using Taylor expansion on ζ near the origin and Eq. (19), we
find that η0 = 3ζ0H0 with

H0 = (P (0) + E(0))eλ(0)+3ν(0)c2s(0) (21)

where η0 and ζ0 are their corresponding values at the center
of the star.

By choosing η0 = 1, we get ζ0 = 1/(3H0) as the ini-
tial value to start our numerical integration using the shooting
method. The values of ω that satisfy η(r = R) = 0 will give
us the required radial oscillation modes.

TABLE I. 20 lowest order radial oscillation frequencies (in kHz) for
three DM momenta each calculated at 1.4 M�.

Nodes kDM
f

0.00 GeV 0.03 GeV 0.05 GeV
0 2.8450 3.1841 3.7404
1 5.8594 7.1023 9.3196
2 7.4079 10.2763 13.9863
3 8.6053 12.7038 18.4640
4 10.1398 13.4110 20.4151
5 11.6405 16.0817 22.8780
6 13.1050 18.1414 27.2547
7 14.6138 19.4984 30.8661
8 16.1008 21.4467 31.6181
9 17.6315 23.5088 35.8852
10 19.1166 25.4284 40.0455
11 20.6377 27.2522 41.3531
12 22.1461 29.1611 44.1685
13 23.6751 31.2952 48.1325
14 25.1789 33.1884 51.6100
15 26.7008 35.0946 52.5281
16 28.2244 37.0844 56.2657
17 29.7513 39.1556 60.3598
18 31.2706 41.0815 62.7705
19 32.7936 43.0182 64.7816

III. RESULTS AND DISCUSSIONS

The radial profile for the η and ζ are plotted in Fig. 3 at
maximum corresponding masses (i.e., at different central den-
sities (ρc)) for three EOSs with kDM

f = 0.00, 0.03 and 0.05
GeV. Here we represent the behavior of f -mode (n = 0) and
9 excited p-modes (n = 1 − 9), and the color bar represents
the order number n corresponding to different modes. For
both η and ζ in the region 0 < r < R, we are getting exactly
n nodes for nth mode following the Sturm-Liouville system.
The oscillation for η is directly proportional to the Lagrangian
pressure variation ∆P , and therefore a decaying amplitude
is observed when it approaches the stellar surface, following
eq. (13). Considering the case of η, the nodes for higher p-
modes shifts towards the centre when we increase kDM

f . The
system tends to oscillate consistently in a somewhat stable re-
gion close to the equilibrium point [52] because η and ∆P are
both continuous. Considering the profile of ζ, all the modes
start from zero as it is associated with the radial displacement
function and satisfies the boundary condition at the centre, eq.
(12), and near the surface, the growing amplitude is observed
with rapid sign change [53]. For DMANS, we observed that
the impact is similar. However, the amplitude of higher p-
modes is significantly reduced compared with no DM, and the
positions of the nodes are changed considerably closer to the
surface.

Altering kDM
f with IOPB-I EOS, we examine the depen-

dency of eigenfrequencies with central energy densities (ρc)
for the first 20 radial modes in Fig. 4. The stability limit
is reached when density rises, irrespective of EOS, as shown
in the same figure. The star is approaching its maximum
mass (Mmax) at the instability point, which is indicated by
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the existence of a zero eigenvalue for the f -mode [25]. The
critical central energy density for the kDM

f = 0.00 GeV is
2.0022 × 1015 g/cm3. However, when we increase the DM
fraction, ρcrit increases as EOS becomes softer and oscillates
with higher frequencies. For the kDM

f = 0.03 GeV, 0.05 GeV,
the ρcrit = 2.2022 × 1015 g/cm3 and 2.9177 × 1015 g/cm3

respectively.
At lower densities, γ being constant, NS acts a homoge-

neous, non-relativistic body. The angular frequency of oscil-
lation follow ω2 ∝ ρ(4γ − 3) [54–56]. This explains the dip
in frequency initially when the star’s central density is low
enough, as shown in Fig. 4.

Another distinguished observation in Fig. 4 is that when
we increase the DM Fermi momentum, the higher modes os-
cillation shows various kinks. This depicts an important ob-
servation that the frequencies of two successive modes from
distinct families rejecting one another as they approach each
other, resulting in a sequence of “avoided crossings” between
the respective modes [21, 22, 25]. The eigenvalue problem’s
solution changes from a standing wave localized mainly in
the crust to one primarily localized in the core at the “avoided
crossings” point[22]. We observed that the phenomenon of
“avoided crossings” is present in all three cases but is much

more prominent for larger kDM
f . DM makes the NS much

more compact leading to a thinner crust, see Fig. 4. This al-
low “avoided crossings” to happened at lower central density.

In Fig. 5, a comparison is made between the frequency
difference of two consecutive modes, i.e., ∆fn = fn+1 − fn
and frequency fn which is calculated at 1.4 M�. Here we take
both EOSs with and without crust-varying DM Fermi momen-
tum for better analysis. In the left panel of the figure, we take
EOSs without the crust, showing the smooth trend in ∆fn and
consistent with [24, 57]. Another observation is that for the
higher values of kDM

f , the magnitude of ∆fn is higher. This
is because DMANS oscillates with a higher frequency and its
magnitude increases with higher percentage of DM inside the
star, as seen in Fig. 4. However, for unified EOSs (in the right
side figure), there is uneven fluctuation in ∆fn. This is due
to the nuclear pasta, which is present inside the inner crust in
which the characteristics of the adiabatic index seem to be no
more monotonic. Since the crust typically makes up less than
10% of the stellar radius and the oscillation nodes are located
deep within the NS core, the radial oscillation lowest order
mode (n = 0) does not get significantly affected by the crust,
as seen in Fig. 3. But a few oscillation nodes for higher-order
modes are located in the crust. Therefore, the crust consid-
erably modifies the eigenfrequencies, and a peak is displayed
by ∆fn whenever a node passes through the pasta zone [53].

The variation of f -mode frequencies with masses for 6 DM
EOSs is shown in Fig. 6 by varying kDM

f . This work directs
our attention to a detailed and in-depth investigation of the re-
lationship between radial oscillation and the stability of NS.
When we raise the kDM

f , as was previously covered in Fig.
4, the f -mode oscillates here at higher frequencies, which
can also be seen in this figure. It is clear that the f -mode
rapidly approaches zero precisely at the point where maxi-
mum numerical NS mass is reached following the M − R
profile shown in Fig. 2 [58]. Therefore, the outcome is in line
with the stability criteria ∂M/∂ρc > 0 [55, 59]. Also, the ra-
dial oscillation equations indirectly assist us in demonstrating
that increasing the DM Fermi momentum softens the EOS.

The variation of canonical f -mode frequencies with DM
Fermi momenta is shown in Fig. 7. With increasing kDM

f
up to 0.025 GeV, there is a slight variation of f -mode fre-
quencies. This is because the effects of DM soften the EOSs
lesser in magnitude compared to a higher Fermi momentum
of DM (see Fig. 1), which slightly decreases the magnitude
of the mass. However, the magnitude of f -mode frequencies
increases more for kDM

f > 0.025 GeV. Overall, the f -mode
frequency of canonical NS increases linearly with kDM

f . Dif-
ferent color contours show the variation of central densities
with kDM

f . The careful inspections illustrated that the color
bands shrink with increasing kDM

f . Also, the area of ρc at
lower kDM

f is found to be larger as compared to the higher
kDM
f and the area slightly reduces from the lower kDM

f to the
higher one. This is because the slight increase in kDM

f en-
hances the value ρc a little bit. When we increase kDM

f of
more than 0.025 GeV, the effects of DM on central densities
are significant, which decreases the mass very profoundly. For
the canonical star, the mass is fixed, but the central densities



7

0.00 0.01 0.02 0.03 0.04 0.05

kDM
f (GeV)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7
f 1
.4

(k
H

z)

0.64

0.72

0.80

0.88

0.96

1.04

1.12

1.20

ρ
c

(1
015

g/
cm

3
)

FIG. 7. Variation of the canonical f -mode frequencies with DM
Fermi momenta. The color bar represents the central densities corre-
sponding to kDM

f .

are different for various kDM
f . Moreover, one can also see the

mass variation with kDM
f for other modes, such as p1 − p19

modes. However, their variations follow the same trends, but
the magnitudes are higher for higher nodes than the f -mode
case.

IV. SUMMARY AND CONCLUSIONS

To summarize our work, in the present article, we have
studied the impact of dark matter on the radial oscillations of
non-rotating neutron stars. Assuming fermionic DM matter
within super-symmetric models, we have adopted the IOPB-I
hadronic EOS. For fixed DM mass and couplings to the nu-
cleons and to the SM Higgs boson, the only free parameter

is the DM Fermi momentum, which determines the number
density of the DM particles inside the star. First, to describe
hydrostatic equilibrium, we solved the structure equations
numerically to obtain the mass-radius relationships. Next,
to study radial oscillations of pulsating stars, we solved the
Sturm–Liouville equations for the perturbations imposing the
appropriate boundary conditions, thanks to which we were
able to compute the frequencies of the modes as well as the
corresponding wave functions. The fundamental f -mode and
19 excited p-modes have been calculated, with and without
DM, varying the DM Fermi momentum. Our numerical re-
sults show that the presence of DM inside NSs softens the
EOS, and consequently, the maximum mass of the stars is low-
ered. What is more, adding DM increases the frequencies of
pulsating objects, irrespective of the presence of the crust. Fi-
nally, the higher the DM Fermi momentum (or, equivalently,
the DM mass fraction), the higher the frequencies of the radial
oscillation modes.

We also investigated the profile of the eigenfunctions, η,
and ζ, with and without DM, and we found that they oscillate
with exactly n nodes for the nth mode for both cases. But the
presence of DM somewhat affects the position of the nodes.
Regarding η, when the DM varies with higher momenta, the
nodes for higher p-modes are shifted towards the center, while
regarding ζ, the amplitude of higher p-modes is significantly
reduced when we increase the DM Fermi momentum, and the
nodes are relocated considerably closer to the surface. Fur-
ther, large frequency separation between consecutive modes
was studied, varying DM Fermi wave numbers with and with-
out crust, and the effects of crust were noted. Finally, the NS
stability was studied varying f -mode with mass and the sta-
bility criterion ∂M/∂ρc > 0 was verified.
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